广告推荐算法(group auc)评价指标及Spark实现代码

文章讨论了在广告推荐系统中,传统AUC指标可能无法准确反映模型性能的问题,并引入了Group AUC作为更合适的评价标准。Group AUC关注同一用户对不同广告的排序能力,通过加权平均每个用户的AUC来计算。当发现AUC提升但实际效果下降时,Group AUC成为重要的参考指标。文中还提供了基于Spark的快速计算GAUC的Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们曾经有这样的疑惑,那就是训练样本,AUC得到提升。当将新模型放到线上后,却发现实际效果却没有老模型好,这时候很多人就开始疑惑了。 ​ 在机器学习算法中,很多情况我们都是把auc当成最常用的一个评价指标,而auc反映整体样本间的排序能力,但是有时候auc这个指标可能并不能完全说明问题,有可能auc并不能真正反映模型的好坏,以CTR预估算法(推荐算法一般把这个作为一个很重要的指标)为例,把用户点击的样本当作正样本,没有点击的样本当作负样本,把这个任务当成一个二分类进行处理,最后模型输出的是样本是否被点击的概率。 ​ 举个很简单的例子,假如有两个用户,分别是甲和乙,一共有5个样本,其中+表示正样本,-表示负样本,我们把5个样本按照模型A预测的score从小到大排序,得到 甲-,甲+,乙-,甲+,乙+. 那么实际的auc应该是 (1+2+2)/(32)=0.833, 那假如有另一个模型B,把这5个样本根据score从小到大排序后,得到 甲-,甲+,甲+,乙-,乙+, 那么该模型预测的auc是(1+1+2)/(32)=0.667。  那么根据auc的表现来看,模型A的表现优于模型B,但是从实际情况来看,对于用户甲,模型B把其所有的负样本的打分都比正样本低,故,对于用户甲,模型B的auc是1, 同理对于用户乙,模型B的auc也应该是1,同样,对于用户甲和乙,模型A的auc也是1,所以从实际情况来看,模型B的效果和模型A应该是一样好的,这和实际的auc的结果矛盾。   可能auc这个指标失真了,因为用户广告之间的排序是个性化的,不同用户的排序结果不太好比较,这可能导致全局auc并不能反映真实情况。 ​ 因为auc反映的是整体样本间的一个排序能力,而在计算广告领域,我们实际要衡量的是不同用户对不同广告之间的排序能力, 实际更关注的是同一个用户对不同广告间的排序能力,为此,参考了阿里妈妈团队之前有使用的group auc的评价指标 group auc实际是计算每个用户的auc,然后加权平均,最后得到group auc,这样就能减少不同用户间的排序

<think>嗯,用户需要的是关于基于大数据的用户满意度分析平台的设计与实现代码示例。首先,我需要回顾一下之前提供的引用内容,看看有没有相关的信息。引用2提到了Hadoop和Spark在电子书推荐中的应用,引用3讨论了Hadoop在电商用户分析中的使用,引用4是关于高考志愿推荐系统的设计。这些可能涉及到数据处理和推荐算法,但用户需要的是满意度分析平台,可能需要结合这些技术。 用户提到的满意度分析平台,可能需要收集用户行为数据、反馈数据等,然后进行处理和分析,最后进行可视化。所以代码示例可能包括数据采集、存储、处理、分析和展示的模块。我需要考虑使用Hadoop、Spark这些大数据框架,可能还需要用到协同过滤或者其他机器学习算法来分析满意度。 另外,用户可能希望看到具体的代码片段,比如数据清洗、分析、存储和可视化的示例。比如使用HDFS存储数据,用Spark进行数据处理,用Hive或HBase进行查询,用Python的可视化库生成图表。同时,需要确保代码结构清晰,符合大数据平台的架构,比如分层的模块设计。 可能还需要注意引用相关的资料,比如引用2中的Hadoop和Spark处理大数据,引用3中的MySQL用于数据存储,引用4中的机器学习模型构建。这些都可以作为代码示例的参考依据。此外,用户可能需要知道如何将各个组件整合在一起,比如数据流程是怎样的,从采集到分析再到展示的步骤。 最后,生成相关问题时要围绕用户满意度分析平台的设计、实现、技术选型、优化等方面提问,帮助用户进一步深入理解。需要确保问题有针对性,能够引导用户探索更多相关内容。</think>### 基于大数据的用户满意度分析平台设计与实现代码示例 #### 1. 系统架构 平台通常分为以下模块: - **数据采集层**:通过日志采集工具(如Flume、Kafka)收集用户行为、交易记录、评价数据等。 - **存储层**:使用HDFS存储原始数据,HBase或MySQL存储结构化数据。 - **分析层**:基于Spark或MapReduce进行数据清洗、特征提取、模型训练。 - **可视化层**:通过Python/JavaScript工具(如Echarts、Tableau)展示分析结果。 #### 2. 核心代码示例 ##### 数据清洗与特征提取(Spark) ```python from pyspark.sql import SparkSession from pyspark.sql.functions import col, when spark = SparkSession.builder.appName("UserSatisfactionAnalysis").getOrCreate() # 加载原始数据(示例字段:用户ID、评分、评论内容、行为类型) raw_data = spark.read.csv("hdfs://path/to/user_behavior.csv", header=True) # 数据清洗:过滤无效评分 cleaned_data = raw_data.filter( (col("rating").between(1, 5)) & (col("comment").isNotNull()) ) # 特征工程:构建满意度标签(假设评分>=4为满意) labeled_data = cleaned_data.withColumn( "satisfaction_label", when(col("rating") >= 4, 1).otherwise(0) ) # 存储预处理数据 labeled_data.write.parquet("hdfs://path/to/processed_data.parquet") ``` ##### 满意度分析模型(Spark MLlib) ```python from pyspark.ml.feature import VectorAssembler from pyspark.ml.classification import LogisticRegression from pyspark.ml.evaluation import BinaryClassificationEvaluator # 特征聚合(示例特征:评分、活跃天数、投诉次数) feature_columns = ["rating", "active_days", "complaint_count"] assembler = VectorAssembler(inputCols=feature_columns, outputCol="features") dataset = assembler.transform(labeled_data) # 划分训练集与测试集 train_data, test_data = dataset.randomSplit([0.8, 0.2]) # 逻辑回归模型训练 lr = LogisticRegression(featuresCol="features", labelCol="satisfaction_label") model = lr.fit(train_data) # 模型评估 predictions = model.transform(test_data) evaluator = BinaryClassificationEvaluator(labelCol="satisfaction_label") auc = evaluator.evaluate(predictions) print(f"AUC = {auc:.3f}") # 输出模型性能指标 ``` ##### 可视化示例(Python + Matplotlib) ```python import matplotlib.pyplot as plt import seaborn as sns # 从Hive读取分析结果(示例数据:各渠道满意度分布) hive_query = """ SELECT channel, AVG(satisfaction_label) as satisfaction_rate FROM user_satisfaction_table GROUP BY channel """ result_df = spark.sql(hive_query).toPandas() # 绘制柱状图 plt.figure(figsize=(10,6)) sns.barplot(x="channel", y="satisfaction_rate", data=result_df) plt.title("用户满意度渠道分布") plt.xlabel("渠道类型") plt.ylabel("满意度比例") plt.savefig("satisfaction_by_channel.png") ``` #### 3. 技术栈参考 - **数据存储**:Hadoop HDFS(原始数据)、HBase(实时查询)、MySQL(元数据管理)[^3] - **计算引擎**:Spark MLlib(机器学习)、MapReduce(批量处理)[^2] - **可视化工具**:ECharts(实时大屏)、Superset(交互式分析)[^4] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值