更加丰富内容可查看我的个人博客:xukang’s blog
方法1、暴力
对于数组中的每个元素,我们找出下雨后水能达到的最高位置,等于两边最大高度的较小值减去当前高度的值。
int trap(vector<int>& height)
{
int ans = 0;
int size = height.size();
for (int i = 1; i < size - 1; i++) {
int max_left = 0, max_right = 0;
for (int j = i; j >= 0; j--) { //Search the left part for max bar size
max_left = max(max_left, height[j]);
}
for (int j = i; j < size; j++) { //Search the right part for max bar size
max_right = max(max_right, height[j]);
}
ans += min(max_left, max_right) - height[i];
}
return ans;
}
方法2、单调栈
这里的单调栈跳跃比较大,不像「柱状图的最大矩形」那道题直接是暴力法的优化。这道题的单调栈,更像是一种高级算法,而不是优化算法。
而且这里的头尾元素不需要考虑,没法积水!
当
height[i] <= height[stk.top()]
,压入栈。否则,在栈顶元素出形成一个低洼!同样注意一下重复元素是怎么处理的!
int trap(vector<int>& height) {
stack<int> stk;
int i = 0;
int res = 0;
while (i < height.size()) {
while (!stk.empty() && height[i] > height[stk.top()]) {
int tmp = stk.top();
stk.pop();
if (stk.empty()) break;
res += (min(height[i], height[stk.top()]) - height[tmp])
* (i - stk.top() - 1);
}
stk.push(i++);
}
return res;
}
方法3、双指针 一行一行的算
class Solution {
public:
int trap(vector<int>& height) {
int max_height = 0;
for (int i = 0; i < height.size(); i++) {
max_height = max(max_height, height[i]);
}
int left = 0, right = height.size() - 1;
int res = 0;
for (int i = 1; i <= max_height; i++) {
while (height[left] < i) left++;
while (height[right] < i) right--;
res += right - left + 1;
}
for (int i = 0; i < height.size(); i++) {
res -= height[i];
}
return res;
}
};