看这个算式:
☆☆☆ + ☆☆☆ = ☆☆☆
如果每个五角星代表 1 ~ 9 的不同的数字。
这个算式有多少种可能的正确填写方法?
173 +286 = 459
295 +173 = 468
173 +295 = 468
183 +492 = 675
以上都是正确的填写法!
注意:
111 +222 = 333 是错误的填写法!
因为每个数字必须是不同的!
也就是说:1~9中的所有数字,每个必须出现且仅出现一次!
注意:
不包括数字“0”!
注意:
满足加法交换率的式子算两种不同的答案。
所以答案肯定是个偶数!
注意:
只要求计算不同的填法的数目
不要求列出所有填写法
更不要求填写源代码!
#include<stdio.h>
#include<stdlib.h>
int arr[9]={1,2,3,4,5,6,7,8,9},n=9,count=0;
void swap(int i,int j)
{
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
}
void print()
{
int m,n,x;
m=(arr[0])*100+(arr[1])*10+arr[2];
n=(arr[3])*100+(arr[4])*10+arr[5];
x=(arr[6])*100+(arr[7])*10+arr[8];
if(m+n==x&&m<n)
count++;
}
void perm(int start,int end){
if(start==end){
print();
}else{
for(int i=start;i<=end;i++)
if(start==i||(start!=i&&arr[start]!=arr[i])){//剔除重复项
swap(start,i);
perm(start+1,end);
swap(start,i);
}
}
}
int main(){
int i,j;
//小→大,可以轻易剔除重复排列
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
if(arr[i]>arr[j])
swap(i,j);
perm(0,n-1);
printf("%d\n",count);
}
测试结果: