随着信息技术的迅猛发展,搜索引擎作为人们获取信息的主要途径,其背后的技术架构也在不断演进。本文详细阐述了近年来视频搜索排序框架的重大变革,特别是在大模型技术需求驱动下,如何从传统的多阶段级联框架逐步演变为更加高效、灵活的端到端排序框架。
全文5887字,预计阅读时间15分钟。
GEEK TALK
01
背景
过去近十年,搜索引擎的主流框架为多阶段级联框架,分为召回,粗排,精排几个阶段。在每个阶段中,系统会基于相关性、质量、时效性和点击率等维度独立建模,然后通过模型融合这些信号进行排序和截断,最终产出检索结果。随着以BERT、ERNIE和GPT为代表的预训练大模型技术的逐渐成熟,利用一套端到端框架解决信息检索问题变得越来越可行。同时,用户差异化,多样化,深层次信息需求越来越强烈, 为了满足这些需求,系统的算力需求也在不断增加。在这种技术及需求趋势的引导下,传统视频搜索排序架构如何演变,已经成为视频搜索最重要课题,同时也对排序架构提出了重大的挑战。
GEEK TALK
02
目标
以大模型技术为主线,打造高性能,扩展灵活的视频搜索排序框架&#