大模型从入门到精通,从看这篇开始:神仙级 AI 大模型入门教程【非常详细】

近年来,人工智能(AI)大模型的迅猛发展吸引了广泛关注,如 GPT-3、BERT 等。它们的强大能力在自然语言处理、图像识别等领域得到了广泛应用。如果你是 AI 领域的新手,想要从零基础开始学习并掌握神仙级 AI 大模型,本文将为你提供一份非常详细的入门教程。

第一部分:理解 AI 大模型的基础

AI 大模型是指拥有极大参数量(通常在亿级甚至百亿级以上)的深度学习模型。这些模型经过大规模数据训练后,能够自动生成文本、回答问题、进行翻译等。它们的核心是深度学习,即使用多个神经网络层来提取数据特征。其中,参数是模型中的可学习变量,影响输出的结果,参数越多,模型的表达能力越强;训练数据则用于训练模型的数据集,包含输入和对应的输出;损失函数用于评估模型预测与实际值之间的差距,指导模型学习;优化器调整模型参数以减少损失函数值的算法,如 SGD、Adam 等。

第二部分:准备学习环境

2.1 硬件准备

由于大模型的训练和推理都对硬件要求较高,建议使用具有 GPU 的计算机。可以选择 NVIDIA 显卡(如 GTX 1660 及以上)来进行深度学习任务。

2.2 软件准备

  1. 安装 Python:大多数 AI 相关库使用 Python 语言,推荐使用 Python 3.6 及以上版本。

  2. 安装 Anaconda:Anaconda 是用于管理 Python 环境和包的工具,能够简化库的安装和管理。

  3. 安装深度学习框架:最常用的框架有 TensorFlow 和 PyTorch 。可以根据以下命令安装:

  • TensorFlow:pip install tensorflow

  • PyTorch:pip install torch torchvision torchaudio

  1. 安装其他常用库:pip install numpy pandas matplotlib transformers

第三部分:学习基础知识

3.1 深入理解机器学习和深度学习

在开始使用大模型之前,了解基本的机器学习和深度学习概念至关重要。机器学习是让计算机从数据中自动学习并进行预测的技术,常见的算法有决策树、支持向量机等。深度学习是一种特殊的机器学习方法,通过多层神经网络架构,能够处理复杂的数据结构,如图像、声音和文本。

3.2 开始使用小模型

在掌握深度学习基础后,建议先通过简单的模型学习。可以使用经典的数据集(如 MNIST 数字识别、CIFAR-10 图像分类)进行实战演练。以下为 MNIST 数字识别任务的示例代码:

import torch 
import torchvision 
import torchvision.transforms as transforms 
from torch import nn, optim 

# 数据下载与预处理 
transform = transforms.Compose((transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)))) 
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) 
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) 

# 神经网络定义 
class SimpleNN(nn.Module): 
    def __init__(self): 
        super(SimpleNN, self).__init__() 
        self.fc1 = nn.Linear(28 * 28, 128) 
        self.fc2 = nn.Linear(128, 10) 

    def forward(self, x): 
        x = x.view(-1, 28 * 28) 
        x = torch.relu(self.fc1(x)) 
        x = self.fc2(x) 
        return x 

# 训练模型 
model = SimpleNN() 
criterion = nn.CrossEntropyLoss() 
optimizer = optim.Adam(model.parameters(), lr=0.001) 

for epoch in range(5): 
    for images, labels in trainloader: 
        optimizer.zero_grad() 
        outputs = model(images) 
        loss = criterion(outputs, labels) 
        loss.backward() 
        optimizer.step() 

第四部分:探索大模型

4.1 使用预训练模型

许多大模型已有预训练版本可供使用,如 Hugging Face 的 Transformers 库提供了多种预训练模型。你可以轻松下载并使用这些模型进行文本生成、分类等任务。

示例:使用 Hugging Face Transformers 库的 GPT-2 进行文本生成

from transformers import GPT2Tokenizer, GPT2LMHeadModel 

# 加载预训练模型和分词器 
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") 
model = GPT2LMHeadModel.from_pretrained("gpt2") 

# 输入文本 
![{"type":"load_by_key","id":"","key":"banner_image_0","width":0,"height":0,"image_type":"search","pages_id":"6148762521138178","genre":"教程文章","artifact_key":6150346084327170}]()
input_text = "Once upon a time" 
input_ids = tokenizer.encode(input_text, return_tensors='pt') 

# 生成文本 
output = model.generate(input_ids, max_length=50) 
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) 
print(generated_text) 

4.2 微调模型

在实际应用中,为了满足特定需求,你可能需要对预训练模型进行微调。这可以扩展模型的功能,加快其在特定任务上的表现。比如对于一个通用的文本分类模型,若要使其更好地对医学领域的文本进行分类,就可以使用医学领域的文本数据对模型进行微调。

4.3 了解大模型的架构

深入学习一些知名大模型的架构,如 BERT、GPT、T5 等,了解它们的创新构建方法和应用场景。以 BERT 为例,它基于 Transformer 架构,通过双向 Transformer 编码器来学习文本的上下文表示,在自然语言处理任务中,如文本分类、问答系统等表现出色。

第五部分:实战项目与进阶学习

5.1 实战项目

结合丰富的数据集进行一些实战项目,如情感分类、机器翻译、图像生成等,为自己增加实践经验。在情感分类项目中,可以使用社交媒体上的用户评论数据,训练模型判断评论的情感倾向是积极、消极还是中性。通过实际项目,能够将之前学到的理论知识应用到实际中,加深对大模型的理解和掌握。

5.2 进阶学习

  1. 阅读文献:关注相关领域的研究文章,了解最新的模型和技术。例如,关注 arXiv、ACL Anthology 等学术平台上关于大模型的最新研究成果,掌握领域前沿动态。

  2. 参加比赛:参加 Kaggle 等数据科学比赛,提升自己的技术能力。在比赛中,与其他参赛者交流竞争,学习他人的优秀经验和方法,有助于快速提升自己在大模型应用方面的能力。

  3. 加入相关的论坛、社区:如 GitHub、Stack Overflow 等,与其他学习者和开发者交流,扩展自己的视野。在这些社区中,可以分享自己的学习心得和项目经验,同时也能从他人那里获取宝贵的建议和资源。

从零基础到精通神仙级 AI 大模型并非易事,但通过这个详细的入门教程,你可以系统地学习和探索。如果你在学习过程中遇到问题,不要气馁,积极寻求帮助,持之以恒,终会掌握这项前沿技术。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值