iic总线(二)

本文介绍I2C总线的数据传输原理及其在实际应用中的实现方法。详细阐述了开始和停止条件、数据稳定性和时钟同步的重要性,并通过实例说明如何使用51系列单片机实现I2C总线接口。

数据传输:
在I2C总线传输过程中,将两种特定的情况定义为开始和停止条件(见图3):当SCL保持”高”时,SDA由”高”变为”低”为开始条件;当SCL保持”高”且SDA由”低”变为”高”时为停止条件。开始和停止条件均由主控制器产生。使用硬件接口可以很容易地检测到开始和停止条件,没有这种接口的微机必须以每时钟周期至少两次对SDA取样,以检测这种变化。

SDA线上的数据在时钟”高”期间必须是稳定的,只有当SCL线上的时钟信号为低时,数据线上的”高”或”低”状态才可以改变。输出到SDA线上的每个字节必须是8位,每次传输的字节不受限制,但每个字节必须要有一个应答ACK。如果一接收器件在完成其他功能(如一内部中断)前不能接收另一数据的完整字节时,它可以保持时钟线SCL为低,以促使发送器进入等待状态;当接收器准备好接受数据的其它字节并释放时钟SCL后,数据传输继续进行。I2C数据总线传送时序如图4所示。

数据传送具有应答是必须的。与应答对应的时钟脉冲由主控制器产生,发送器在应答期间必须下拉SDA线。当寻址的被控器件不能应答时,数据保持为高并使主控器产生停止条件而终止传输。在传输的过程中,在用到主控接收器的情况下,主控接收器必须发出一数据结束信号给被控发送器,从而使被控发送器释放数据线,以允许主控器产生停止条件。合法的数据传输格式如下:

I2C总线在开始条件后的首字节决定哪个被控器将被主控器选择,例外的是”通用访问”地址,它可以在所有期间寻址。当主控器输出一地址时,系统中的每一器件都将开始条件后的前7位地址和自己的地址进行比较。如果相同,该器件即认为自己被主控器寻址,而作为被控接收器或被控发送器则取决于R/W位。

折叠编辑本段应用

应用:
I2C总线是各种总线中使用信号线最少,并具有自动寻址、多主机时钟同步和仲裁等功能的总线。因此,使用I2C总线设计计算机系统十分方便灵活,体积也小,因而在各类实际应用中得到广泛应用。下面举二个应用示例。

I2C的运用比如在铁电存储器中,用铁电存储数据就是用的I2C总线协议。

折叠伺服控制系统用I2C扩展LCD显示器

折叠通用I/O端口作为I2C总线接口

目前,51、96系列的单片机应用很广,但是由于它们都没有I2C总线接口,从而限制了在这些系统中使用具有I2C总线接口的器件。通过对I2C总线时序的分析,可以用51单片机的两根I/O线来实现I2C总线的功能。接I2C总线规定:SCL线和SDA线是各设备对应输出状态相”与”的结果,任一设备都可以用输出低电平的方法来延长SCL的低电平时间,以迫使高速设备进入等待状态,从而实现不同速度设备间的时钟同步。因此,即使时钟脉冲的高、低电平时间长短不一,也能实现数据的可靠传送,可以用软件控制I/O口做I2C接口。下面就是用GMS97C2051的通用I/O口来作为I2C总线接口,并由软件控制实现数据传送的例子,图6为其连线图。

在单主控器的系统中,时钟线仅由主控器驱动,因此可以用51系列的一根I/O线作为SCL的信号线,将其设置为输出方式,并由软件控制来产生串行时钟信号。在实际系统中使用了P1.3。另一根I/O线P1.2作为I2C总线的串行数据线,可在软件控制下在时钟的低电平期间读取或输出数据。系统传输数据的过程如下:先由单片机发出一个启始数据信号,接着送出要访问器件的7位地址数据,并等待被控器件的应答信号。当收到应答信号后,根据访问要求进行相应的操作。如果是读入数据,则数据线可一直设为输入方式,中间不需要改变SDA线的工作方式,每读入一个字节均应依次检测应答信号;如果是输出数据,则首先将SDA设置为输出方式,当发送完一个字节后,需要改变SDA线为输入方式,此时读入被控器件的应答信号就完成了一个字节的传送。当所有数据传输完毕后,应向SDA发出一个停止信号,以结束该次数据传输。

【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计和数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构和算法,因为内置的`int`、`long long`等类型无法满足大整数的存储和计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一位数字。例如,可以使用一个动态分配的数组,每个元素表示一个位上的数字,从低位到高位排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n位数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值和分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论和密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进位、溢出等问题,以及如何优化代码以提高效率。例如,使用位操作可以加速某些步骤,同时要确保代码的正确性和可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例和性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值