OpenCV里提取目标轮廓的函数是findContours,它的输入图像是一幅二值图像,输出的是每一个连通区域的轮廓点的集合:vector<vector<Point>>。
外层vector的size代表了图像中轮廓的个数,里面vector的size代表了轮廓上点的个数。
hiararchy参数和轮廓个数相同,每个轮廓contours[ i ]对应4个hierarchy元素hierarchy[ i ][ 0 ] ~hierarchy[ i ][ 3 ],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,该值设置为负数。
第六个参数传入CV_CHAIN_CODE时,要设置成sizeof(CvChain),其它情况统一设置成sizeof(CvContour)
CV_CHAIN_CODE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
CV_CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。例如一个矩形轮廓只需4个点来保存轮廓信息
CV_RETR_EXTERNAL:只检索最外面的轮廓;
CV_RETR_LIST:检测的轮廓不建立等级关系,检索所有的轮廓,并将其保存到一条链表当中;
CV_RETR_CCOMP:建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
CV_RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次,可以参见下图。
加滚动条确定阈值化的合适阈值!:http://blog.csdn.net/augusdi/article/details/9021467
****************************************************************************************
//做一下膨胀,x与y方向都做,但系数不同
var kernal = Cv.CreateStructuringElementEx(5, 2, 1, 1, ElementShape.Rect);
Cv.Erode(gray, gray, kernal, 2);
//二值化
Cv.Threshold(gray, gray, 0, 255, ThresholdType.BinaryInv | ThresholdType.Otsu);
//检测连通域,每一个连通域以一系列的点表示,FindContours方法只能得到第一个域
var storage = Cv.CreateMemStorage();
CvSeq<CvPoint> contour = null;
Cv.FindContours(gray, storage, out contour, CvContour.SizeOf, ContourRetrieval.CComp, ContourChain.ApproxSimple);
var color = new CvScalar(0, 0, 255);
//开始遍历
while (contour != null)
{
//得到这个连通区域的外接矩形
var rect = Cv.BoundingRect(contour);
//如果高度不足,或者长宽比太小,认为是无效数据,否则把矩形画到原图上
if(rect.Height > 10 && (rect.Width * 1.0 / rect.Height) > 0.2)
Cv.DrawRect(src, rect, color);
//取下一个连通域
contour = contour.HNext;
}
***************************************************************
***********************************************************************************************************
// 移除过小或过大的轮廓
void getSizeContours(vector<vector<Point>> &contours)
{
int cmin = 100; // 最小轮廓长度
int cmax = 1000; // 最大轮廓长度
vector<vector<Point>>::const_iterator itc = contours.begin();
while(itc != contours.end())
{
if((itc->size()) < cmin || (itc->size()) > cmax)
{
itc = contours.erase(itc);
}
else ++ itc;
}
}
****************************************************************************
while(contour) {
/*area = cvContourArea(contour, CV_WHOLE_SEQ);*/
area = fabs(cvContourArea( contour, CV_WHOLE_SEQ )); //获取当前轮廓面积
printf("area == %lf\n", area);
//画轮廓
//画外接矩形
CvRect r = ((CvContour*)contour)->rect;
if (r.height * r.width > size)
{
cvRectangle(pimg, cvPoint(r.x, r.y), cvPoint(r.x + r.width, r.y + r.height),CV_RGB(255, 0, 0), 1, CV_AA, 0);
}
contour = contour->h_next;
}
*********************************************************************************************************
// Get the contours of the connected components
std::vector<std::vector<cv::Point>> contours;
cv::findContours(gray,
contours, // a vector of contours
CV_RETR_EXTERNAL , // retrieve the external contours
CV_CHAIN_APPROX_NONE); // retrieve all pixels of each contours
// Print contours' length
std::cout << "Contours: " << contours.size() << std::endl;
std::vector<std::vector<cv::Point>>::const_iterator itContours= contours.begin();
for ( ; itContours!=contours.end(); ++itContours)
{
std::cout << "Size: " << itContours->size() << std::endl;
}
// draw black contours on white image
cv::Mat result(image.size(),CV_8U,cv::Scalar(255));
cv::drawContours(result,contours,
-1, // draw all contours
cv::Scalar(0), // in black
2); // with a thickness of 2
************************************************************************
double maxarea = 0;
double minarea = 100;
int m = 0;
for( ; contour != 0; contour = contour->h_next )
{
double tmparea = fabs(cvContourArea(contour));
if(tmparea < minarea)
{
cvSeqRemove(contour, 0); // 删除面积小于设定值的轮廓
continue;
}
CvRect aRect = cvBoundingRect( contour, 0 );
if ((aRect.width/aRect.height)<1)
{
cvSeqRemove(contour, 0); //删除宽高比例小于设定值的轮廓
continue;
}
if(tmparea > maxarea)
{
maxarea = tmparea;
}
m++;
// 创建一个色彩值
CvScalar color = CV_RGB( 0, 255, 255 );
//max_level 绘制轮廓的最大等级。如果等级为0,绘制单独的轮廓。如果为1,绘制轮廓及在其后的相同的级别下轮廓
//如果值为2,所有的轮廓。如果等级为2,绘制所有同级轮廓及所有低一级轮廓,诸此种种
//如果值为负数,函数不绘制同级轮廓,但会升序绘制直到级别为abs(max_level)-1的子轮廓
cvDrawContours(dst, contour, color, color, -1, 1, 8); //绘制外部和内部的轮廓
}
contour = _contour;
int count = 0;
for(; contour != 0; contour = contour->h_next)
{
count++;
double tmparea = fabs(cvContourArea(contour));
if (tmparea == maxarea)
{
CvScalar color = CV_RGB( 255, 0, 0);
cvDrawContours(dst, contour, color, color, -1, 1, 8);
}
}
*************************************************************************************
在提取之前还可以调用一个函数:
contour = cvApproxPoly( contour, sizeof(CvContour), storage, CV_POLY_APPROX_DP, 3, 1 );
可能是拟合,有这一句找出的轮廓线更直。 contour里面包含了很多个轮廓,每个轮廓是单独存放的.
输出轮廓位置!
printf(" %d elements:\n", c->total );
for( int i=0; i<c->total; ++i ) {
CvPoint* p = CV_GET_SEQ_ELEM( CvPoint, c, i );
printf(" (%d,%d)\n", p->x, p->y );
}
输出轮廓面积!
for( ; contour; contour = contour->h_next)
{
area = fabs(cvContourArea(contour, CV_WHOLE_SEQ)); //获取当前轮廓面积
printf("area == %lf\n", area);
if(area > maxArea)
{
contmax = contour;
maxArea = area;
}
}
***********************************************************************************************
内轮廓填充
// 参数:
// 1. pBinary: 输入二值图像,单通道,位深IPL_DEPTH_8U。
// 2. dAreaThre: 面积阈值,当内轮廓面积小于等于dAreaThre时,进行填充。
void FillInternalContours(IplImage *pBinary, double dAreaThre)
{
double dConArea;
CvSeq *pContour = NULL;
CvSeq *pConInner = NULL;
CvMemStorage *pStorage = NULL;
// 执行条件
if (pBinary)
{
// 查找所有轮廓
pStorage = cvCreateMemStorage(0);
cvFindContours(pBinary, pStorage, &pContour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
// 填充所有轮廓
cvDrawContours(pBinary, pContour, CV_RGB(255, 255, 255), CV_RGB(255, 255, 255), 2, CV_FILLED, 8, cvPoint(0, 0));
// 外轮廓循环
for (; pContour != NULL; pContour = pContour->h_next)
{
// 内轮廓循环
for (pConInner = pContour->v_next; pConInner != NULL; pConInner = pConInner->h_next)
{
// 内轮廓面积
dConArea = fabs(cvContourArea(pConInner, CV_WHOLE_SEQ));
if (dConArea <= dAreaThre)
{
cvDrawContours(pBinary, pConInner, CV_RGB(255, 255, 255), CV_RGB(255, 255, 255), 0, CV_FILLED, 8, cvPoint(0, 0));
}
}
}
cvReleaseMemStorage(&pStorage);
pStorage = NULL;
}
}
******************************************************************* *********************
// Get the contours of the connected components
std::vector<std::vector<cv::Point>> contours;
cv::findContours(image,
contours, // a vector of contours
CV_RETR_EXTERNAL, // retrieve the external contours
CV_CHAIN_APPROX_NONE); // retrieve all pixels of each contours
// Print contours' length
std::cout << "Contours: " << contours.size() << std::endl;
std::vector<std::vector<cv::Point>>::const_iterator itContours= contours.begin();
for ( ; itContours!=contours.end(); ++itContours)
{
std::cout << "Size: " << itContours->size() << std::endl;
}
***************************************************************************************
// Eliminate too short or too long contours
int cmin= 100; // minimum contour length
int cmax= 1000; // maximum contour length
std::vector<std::vector<cv::Point>>::const_iterator itc= contours.begin();
while (itc!=contours.end()) {
if (itc->size() < cmin || itc->size() > cmax)
itc= contours.erase(itc);
else
++itc;
}
输出所有轮廓的旋转角度
CvBox2D End_Rage2D;
CvMemStorage *storage = cvCreateMemStorage(0); //开辟内存空间
CvSeq* contour = NULL; //CvSeq类型 存放检测到的图像轮廓边缘所有的像素值,坐标值特征的结构体以链表形式
cvFindContours( pSrcImage, storage, &contour, sizeof(CvContour),CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);//这函数可选参数还有不少
for(; contour; contour = contour->h_next) //如果contour不为空,表示找到一个以上轮廓,这样写法只显示一个轮廓
//如改为for(; contour; contour = contour->h_next) 就可以同时显示多个轮廓
{
End_Rage2D = cvMinAreaRect2(contour);
//代入cvMinAreaRect2这个函数得到最小包围矩形 这里已得出被测物体的角度,宽度,高度,和中点坐标点存放在CvBox2D类型的结构体中,
//主要工作基本结束。
std::cout <<" angle:\n"<<(float)End_Rage2D.angle << std::endl; //被测物体旋转角度
}
//函数形式画轮廓
void DrawRec(IplImage* pImgFrame,IplImage* pImgProcessed,int MaxArea)
{
//pImgFrame:初始未处理的帧,用于最后标出检测结果的输出;
//pImgProcessed:处理完的帧,用于找运动物体的轮廓
stor = cvCreateMemStorage(0); //创建动态结构和序列
cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint) , stor);
// 找到所有轮廓
cvFindContours( pImgProcessed, stor, &cont, sizeof(CvContour),
CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));
// 直接使用CONTOUR中的矩形来画轮廓
for(;cont;cont = cont->h_next)
{
CvRect r = ((CvContour*)cont)->rect;
if(r.height * r.width > MaxArea) // 面积小的方形抛弃掉
{
cvRectangle( pImgFrame, cvPoint(r.x,r.y),
cvPoint(r.x + r.width, r.y + r.height),
CV_RGB(255,0,0), 1, CV_AA,0);
}
}
cvShowImage("video", pImgFrame);
}
***********************************************************************************************
绍opencv 的基于面积区域过滤方法,这个对图像处理时去除小区域杂点是很有帮助的。基于区域宽度,高度等其他方式的过滤也可以根据这个方法类推。
# 图片中找到我们需要的目标 一般是最大连通区域
#获取当前轮廓面积
area = abs(cv.cvContourArea( contour ))
# 获取最大区域矩形块
aRect = cv.cvBoundingRect( contmax, 0 )
#原始区域的不加边框
#rcenter = cv.cvPoint2D32f(aRect.x + aRect.width/2.0, aRect.y + aRect.height/2.0)
*****************************************************************************************
//移除过长或过短的轮廓
int cmin = 100; //最小轮廓长度
int cmax = 1000; //最大轮廓
vector<vector<Point>>::const_iterator itc = contours.begin();
while (itc!=contours.end())
{
if (itc->size() < cmin || itc->size() > cmax)
itc = contours.erase(itc);
else
++itc;
}
//在白色图像上绘制黑色轮廓
Mat result_erase(binaryImage.size(), CV_8U, Scalar(255));
drawContours(result_erase, contours,
-1, //绘制所有轮廓
Scalar(0), //颜色为黑色
2); //轮廓线的绘制宽度为2
Rect r0 = boundingRect(Mat(contours[0]));
rectangle(result_erase, r0, Scalar(128), 2);
Rect r1 = boundingRect(Mat(contours[1]));
rectangle(result_erase, r1, Scalar(128), 2);
*****************************************************************************************************************
//对前景先进行中值滤波,再进行形态学膨胀操作,以去除伪目标和连接断开的小目标
69 medianBlur(mask, mask, 5);
70 //morphologyEx(mask, mask, MORPH_DILATE, getStructuringElement(MORPH_RECT, Size(5, 5)));
71
72 //测试:先开运算再闭运算
73 morphologyEx(mask, mask, MORPH_CLOSE, getStructuringElement(MORPH_RECT, Size(5, 5)));
74 morphologyEx(mask, mask, MORPH_OPEN, getStructuringElement(MORPH_RECT, Size(5, 5)));
//外接矩阵
93 Rect rct;
94
95 //对轮廓进行外接矩阵之前先对轮廓按面积降序排序,目的为了去除小目标(伪目标)
96 sort(contours.begin(), contours.end(), descSort);
97
98 for (int i = 0; i < contours.size(); i++)
99 {
100 //当第i个连通分量的外接矩阵面积小于最大面积的1/6,则认为是伪目标
101 if (contourArea(contours[i]) < contourArea(contours[0]) / 5)
102 break;
103 //包含轮廓的最小矩阵
104 rct = boundingRect(contours[i]);
105 rectangle(result, rct, Scalar(0, 255, 0), 2);
106
107 }
**************************************************************************************************************
Mat element(5,5,CV_8U,Scalar(1));
cvMorphologyEx(green, green, NULL, element, CV_MOP_OPEN); // 开运算,去除比结构元素小的亮点
cvThreshold(green, green, 0.0, 255.0, CV_THRESH_BINARY | CV_THRESH_OTSU); // OTSU法二值化
一般用:findContours(image,contours,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_NONE);
int cmin=100;
int cmax=1000;
vector<std::vector<cv::Point> >::iterator itc = contours.begin();
while(itc!=contours.end())
{
if(itc->size()<cmin||itc->size()>cmax)
itc =contours.erase(itc);
else
itc++;
}
Mat image2=imread("E:\\group.jpg");
drawContours(image2,contours,-1,Scalar(255,255,255),2);
imshow("image",image2);
opencv学习系列:连通域参考处理
最新推荐文章于 2024-08-19 07:50:00 发布