Description
求第 k k k个不包含平方因子的数
Solution
首先肯定是二分答案
x
x
x,然后求
<
=
x
<=x
<=x的不包含平方因子的数的个数
然后推样例的时候发现:
个
数
=
x
−
x
2
2
−
x
3
2
−
x
5
2
+
x
6
2
−
x
7
2
+
x
1
0
2
个数=x-\frac{x}{2^2}-\frac{x}{3^2}-\frac{x}{5^2}+\frac{x}{6^2}-\frac{x}{7^2}+\frac{x}{10^2}
个数=x−22x−32x−52x+62x−72x+102x
又结合“不包含平方因子”这句话,突然发现:每一项的系数都是莫比乌斯函数!!
然后就很好写了
Code
#include<bits/stdc++.h>
using namespace std;
const int N=44800;
int mu[N],l,r,mid,k,pr[N/9],T,i,cnt,j,ans,t;
bool vis[N];
bool chk(int x){
int t=sqrt(x),tot=0;
for (int i=1;i<=t;i++) tot+=mu[i]*(x/(i*i));
return tot>=k;
}
int main(){
scanf("%d",&T);
mu[1]=1;
for (i=2;i<N;i++){
if (!vis[i]) pr[cnt++]=i,mu[i]=-1;
for (j=0;j<cnt && (t=i*pr[j])<N;j++){
vis[t]=1,mu[t]=-mu[i];
if (i%pr[j]==0){
mu[t]=0;
break;
}
}
}
for (;T--;){
scanf("%d",&k);
l=0,r=1.7e9;
while (l<=r){
mid=(1ll*l+r)>>1;//l+r可能爆long long
if (chk(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d\n",ans);
}
}