配置caffe-SSD

原文链接:http://blog.csdn.net/u014696921/article/details/53138327

SSD的安装

  • 在home目录下,获取SSD的代码,下载完成后有一个caffe文件夹
  •    git clone https://github.com/weiliu89/caffe.git
       cd caffe
       git checkout ssd(出现“分支”则说明copy-check成功)
    • 进入下载好的caffe目录,复制配置文件
       cd /home/usrname/caffe
       cp Makefile.config.example Makefile.config
     
    • 编译caffe三部曲
       make all  -j16  //-j16根据本机的处理器配置,16是16核处理器的意思
       make test -j16
       make runtest -j16(这一步不是必须的)
    • 额外编译,根据需要(因为SSD利用python完成,需编译pycaffe)
       make pycaffe -j16

    准备工作

     cd ..
       mkdir data
       cd data/
     
    • 下载数据集
       wget  http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
       wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
       wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
     
    • 数据集解压
       tar -xvf VOCtrainval_11-May-2012.tar
       tar -xvf VOCtrainval_06-Nov-2007.tar
       tar -xvf VOCtest_06-Nov-2007.tar
     
    • 将图片转化为LMDB文件,用于训练
       cd ..
       cd caffe/
       ./data/VOC0712/create_list.sh  
       ./data/VOC0712/create_data.sh
     
    • 这里用的脚本实现批处理,可能会出现:no module named caffe等错误,这是由于caffe的Python环境变量未配置好,可按照下面方法解决:
       echo "export PYTHONPATH=/home/usrname/caffe/python" >> ~/.profile  
       source ~/.profile  
       echo $PYTHONPATH #检查环境变量的值

                          *这里也可以使用sudo vim ~/.profile打开环境变量profile文件,在文件最后添加“exprot PYTHONPATH=/home/yourname/caffe/python”,然后保存关闭。

                          然后使用命令:source ~/.profile使其生

  • 训练模型

    • 在下载的caffe根目录执行如下命令训练,在examples/ssd下存在几个.py文件,训练的时间较长,迭代60000次,博主训练了一天!
       python examples/ssd/ssd_pascal.py

    实验效果

    (1)在图片测试集上测试

       python examples/ssd/score_ssd_pascal.py
     

    利用它跑了一遍数据集,得出准确率可以达到百分之70多

    (2)在视频上测试

       python examples/ssd/ssd_pascal_video.py 
     

    利用师兄的行人视频做了测试,实时性高,但是漏检率蛮严重的,这是不可避免的 
    这里写图片描述 
    这里写图片描述 
    当然,直接跑是他自带的视频,想跑自己的代码的话,要先用vim打开该文件,定位到51行,修改视频路径为已有本地视频,这样就可以畅快的跑自己的视频

    (3)在摄像头上测试

       python examples/ssd/ssd_pascal_webcam.py

    博主移植到台式机上出现了问题,还没有改好bug,改好了会分享给大家

    后期工作

    • 研究SSD的python源代码,用来训练和检测交通标志\文本检测,人脸检测等等

    作者给定的预训练模型

    如果没有好的机器配置或者省事一些的,可以使用作者给出的训练好的模型:

    • Models trained on VOC0712:SSD300 SSD500
    • 还有其他的模型,这里就不一一列举,感兴趣的可以去官方主页看,链接已在前面给出

    最近一直在搞object detection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti, 识别速度大概是15fps.最近发现SSD(single shot multibox detector) 这篇论文效果和速度都不错,我自己实验了一下,速度确实比faster-rcnn快不少。下面分两部分来介绍。第一部分介绍SSD的安装,第二部分介绍如何基于SSD训练自己的数据集。

     
     

    第二部分 训练自己的数据集

    首先我们不妨先跑一下项目的demo, 需要下载数据集,提前训练好的数据集等。 
    下载预训练的模型,链接:http://pan.baidu.com/s/1miDE9h2 密码:0hf2,下载完成后保存在:

    caffe/models/VGGNet/

    下载VOC2007和VOC2012数据集, 放在/data目录下:

    cd data
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    
    tar -xvf VOCtrainval_11-May-2012.tar
    tar -xvf VOCtrainval_06-Nov-2007.tar
    tar -xvf VOCtest_06-Nov-2007.tar
     

    创建lmdb格式的数据:

    cd caffe
    ./data/VOC0712/create_list.sh
    # It will create lmdb files for trainval and test with encoded original image:
    #   - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb
    #   - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb
    ./data/VOC0712/create_data.sh
     

    训练和测试

    python examples/ssd/ssd_pascal.py
    
     

    论文中,作者已经预训练好模型,下载链接:http://www.cs.unc.edu/%7Ewliu/projects/SSD/models_VGGNet_VOC0712_SSD_300x300.tar.gz,我们不必自己再去训练, 下载完成后放入指定的文件夹下。 
    测试时,我们使用/example/ssd/目录里的ssd_detect.ipynb,运行这个文件,需要安装ipython及ipython-notebook, 或者直接把里面的代码拷贝出来,写到一个新的python文件里,比如命名ssd_detector.py.

    OK, 下面修改一系列文件来训练自己的数据集 
    两种方案, 第一:保持原来的文件目录结构及文件名不变, 只替换里面的数据。第二:重新新建一个与之前类似的目录结构,改成自己命名的文件夹,第二种方法,有一定的风险性,需要修改程序里涉及数据路径的代码。在之前讲解的faster-rcnnan那篇博客中, 我们采用第一种方案。本次我们采用第二种方案。 
    在/data目录下创建一个自己的文件夹:

    cd /data
    mkdir mydataset
     

    把/data/VOC0712目录下的create_list.sh 、create_data.sh、labelmap_voc.prototxt 这三个文件拷贝到/mydataset下:

    cp data/create* ./mydataset
    cp data/label* ./mydataset
     

    labelmap_voc.prototxt, 此文件定义label。

    在/data/VOCdevkit目录下创建mydataset, 并放入自己的数据集:

    cd data/VOCdevkit
    mkdir mydataset
    cd mydataset
    mkdir Annotations
    mkdir ImageSets
    mkdir JPEGImages
    cd ImageSets
    mkdir Layout
    mkdir Main
    mkdir Segmentation
     

    其中Annotations中存放一些列XML文件,包含object的bbox,name等; 
    ImageSets中三个子目录下均存放train.txt, val.txt, trainval.txt, test.txt这几个文件,文件内容为图片的文件名(不带后缀); 
    JPEGImages存放所有的图片;

    在/examples下创建mydataset文件夹:

    mkdir mydataset

    文件夹内存放生成的lmdb文件。

    上述文件夹创建好后, 开始生成lmdb文件, 在创建之前需要修改相关路径:

    ./data/mydataset/create_list.sh
    ./data/mydataset/create_data.sh
     

    此时,在examples/mydataset/文件夹下可以看到两个子文件夹, mydataset_trainval_lmdb, mydataset_test_lmdb;里面均包含data.dmb和lock.dmb;

    到此为止,我们的数据集就做好了。接下来就开始训练了。训练程序为/examples/ssd/ssd_pascal.py,运行之前,我们需要修改相关路径代码:

    cd /examples/ssd
    vim sd_pascal.py, 修改如下:
    57行: train_data路径;
    59行:test_data路径;
    197-203行:save_dir、snapshot_dir、job_dir、output_result_dir路径;
    216-220行: name_size_file、label_map_file路径;
    223行:num_classes 修改为1 + 类别数
    315行:num_test_image:测试集图片数目
     

    另外, 如果你只有一个GPU, 需要修改285行: 
    gpus=”0,1,2,3” ===> 改为”0” 
    否则,训练的时候会出错。 
    修改完后运行

    python ./examples/ssd/ssd_pascal.py 

    训练完, 修改ssd_detector.py中模型路径, 任意找一张图片识别,看看效果怎么样。

    参考: 
    【1】SSD论文Single Shot MultiBox Detector
    【2】https://github.com/weiliu89/caffe/tree/ssd

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值