母函数应用详解,反应比较慢的童鞋有福了,灰常详细-

本文详细介绍了如何使用母函数解决ACM算法中的问题,通过实例解析了如何利用母函数解决称重和邮票贴出不同数值的问题,帮助理解整数拆分和拆分数的概念,并给出了相关代码实现。
摘要由CSDN通过智能技术生成

本来呢我是ACM新手,在做hdu2079时纠结的肠子都青了,后来看了Tanky Woo的文章 http://www.wutianqi.com/?p=596 但咱这大脑比较迟钝,数学功底也不好,看了好多遍硬是没看懂,最后看了杭电的ppthttp://wenku.baidu.com/view/0b732e5d3b3567ec102d8a3e.html

终于懂了.为了各位反应慢的童鞋的幸福,我来对此进行详解::::

这第一种大家应该都没问题吧,很好理解,我就照着原文来了

第一种:

有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?

考虑用母函数来解决这个问题:

我们假设x表示砝码,x的指数表示砝码的重量,这样:

1个1克的砝码可以用函数1+1*x^1表示,

1个2克的砝码可以用函数1+1*x^2表示,

1个3克的砝码可以用函数1+1*x^3表示,

1个4克的砝码可以用函数1+1*x^4表示,

上面这四个式子懂吗?

我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就是一个质量为2的砝码。

那么前面的1表示什么?按照上面的理解,1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。

所以这里1+1*x^2 = 1*x^0 + 1*x^2,即表示2克的砝码有两种状态,不取或取,不取则为1*x^0,取则为1*x^2

 

不知道大家理解没,我们这里结合前面那句话:

把组合问题的加法法则和幂级数的乘幂对应起来

 

接着讨论上面的1+x^2,这里x前面的系数有什么意义?

这里的系数表示状态数(方案数)

1+x^2,也就是1*x^0 + 1*x^2,也就是上面说的不取2克砝码,此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)

 

所以,前面说的那句话的意义大家可以理解了吧?

几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:

(1+x)(1+x^2)(1+x^3)(1+x^4)

=(1+x+x^2+x^4)(1+x^3+^4+x^7)

=1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10

从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)

例如右端有2^x^5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。

故称出6克的方案数有2种,称出10克的方案数有1种 。

那如果是1克砝码有3个,2克有4个,4克有2个,那么N克重量的有几种情况呢?

这个的母函数按照前面的方法就是(1+x^1+x^2+x^3)(1+x^2+x^4+x^6+x^8)(1+x^4+x^8)

我再来对这个式子解释下,第一个式里“1”表示没用1克砝码的情况,x^1表示1克砝码用一次的情况,x^2表示1克砝码用两次(即x^(1+1))的情况,x^3表示1克砝码用三次(即x^(1+1+1))的情况。由概率论的加法原理第一个因式就是表示1克砝码的所有可能取值。同理可知后面的两个因式。

hdu2079就是用的这个方法..

第二种:

求用1分、2分、3分的邮票贴出不同数值的方案数:

大家把这种情况和第一种比较有何区别?第一种每种是一个,而这里每种是无限的。

母函数图(4)

 

以展开后的x^4为例,其系数为4,即4拆分成1、2、3之和的拆分方案数为4;

即 :4=1+1+1+1=1+1+2=1+3=2+2

 

这里再引出两个概念"整数拆分"和"拆分数":

所谓整数拆分即把整数分解成若干整数的和(相当于把n个无区别的球放到n个无标志的盒子,盒子允许空,也允许放多于一个球)。

整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数

看懂了第一种,第二种也就不难,只是每个因式里有n项,因为每种邮票可以取无限多个.这里我也不仔细解释了,都一样的

下面我来解释下第二种的代码

注意:以下代码所做的工作是已知邮票的总面值nNum,每张面值可以是1,2,3,4,5,6........,求一共有多上中组合方式.

和上面式子不同的是:因式的个数为nNum

#include <iostream>
using namespace std;
const int _max = 10001; 
// c1[b]是保存各面值邮票可以组合的数目,即上面式子中x前面的系数,而标号b就表示的x的指数.
// c2[b]是中间量
int c1[_max], c2[_max];   
int main()
{    //int n,i,j,k;
    int nNum;   // 
    int i, j, k;
 
    while(cin >> nNum)
    {
        for(i=0; i<=nNum; ++i)   /* 对式子初始化,c1[i](系数)置1就得到了上面
G(x)=(1+c1[1]x^1+c1[2]x^2+....)(1+c1[2]x^2+c1[4]x^4+c1[6]x^6+....)(1+c1[3]x^3+c1[6]x^6+c1[9]x^9+....) */
        {
            c1[i] = 1;
            c2[i] = 0;
        }
        for(i=2; i<=nNum; ++i)   // 这里的i表示第i个因式,当i=2执行完后,前两个因式合并为一个,剩下nNum-1个因式.
        {
 
            for(j=0; j<=nNum; ++j)   // 这个循环表示两个因式合并时的前一个因式
                for(k=0; k+j<=nNum; k+=i)  // 这个循环表示两个因式合并时的后一个因式
                {
                    c2[j+k] += c1[j];  //x^j*x^k=x^(j+k),所以为c2[j+k],,把合并后的每个x^(j+k)的系数放在c2[]里
                }
            for(j=0; j<=nNum; ++j)     // 把中间量c2[]的值给c1[],使其能继续参与后续运算,并把中间变量清零。
            {
                c1[j] = c2[j];
                c2[j] = 0;
            }
        }
        cout << c1[nNum] << endl;        //c1[nNum]就表示的x^nNum的系数,即可能的情况数
    }
    return 0;
}
hdu1028题和这个方法完全一样
下面就是Tanky Woo大神给我们的一些建议了,我就照搬过来了
(相应题目解析均在相应的代码里分析)

1.  题目:http://acm.hdu.edu.cn/showproblem.php?pid=1028

代码:http://www.wutianqi.com/?p=587

这题大家看看简单不?把上面的模板理解了,这题就是小Case!

看看这题:

2.  题目:http://acm.hdu.edu.cn/showproblem.php?pid=1398

代码:http://www.wutianqi.com/?p=590

要说和前一题的区别,就只需要改2个地方。 在i遍历表达式时(可以参考我的资料—《母函数详解》),把i<=nNum改成了i*i<=nNum,其次在k遍历指数时把k+=i变成了k+=i*i; Ok,说来说去还是套模板~~~

3.  题目:http://acm.hdu.edu.cn/showproblem.php?pid=1085

代码:http://www.wutianqi.com/?p=592

这题终于变化了一点,但是万变不离其中。

大家好好分析下,结合代码就会懂了。

4.  题目:http://acm.hdu.edu.cn/showproblem.php?pid=1171

代码:http://www.wutianqi.com/?p=594

还有一些题目,大家有时间自己做做:

HDOJ:1709,1028、1709、1085、1171、1398、2069、2152


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值