图的基本算法(BFS和DFS)

这里写图片描述

从顶点1开始进行广度优先搜索:
初始状态,从顶点1开始,队列={1}
访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
访问2的邻接结点,2出队,4入队,队列={3,4}
访问3的邻接结点,3出队,队列={4}
访问4的邻接结点,4出队,队列={ 空}
结点5对于1来说不可达。
上面的图可以通过如下邻接矩阵表示:

#include <iostream>
#include <queue>
#define N 5
using namespace std;
int maze[N][N] = {
    { 0, 1, 1, 0, 0 },
    { 0, 0, 1, 1, 0 },
    { 0, 1, 1, 1, 0 },
    { 1, 0, 0, 0, 0 },
    { 0, 0, 1, 1, 0 }
};
int visited[N + 1] = { 0, };
void BFS(int start)
{
    queue<int> Q;
    Q.push(start);
    visited[start] = 1;
    while (!Q.empty())
    {
        int front = Q.front();
        cout << front << " ";
        Q.pop();
        for (int i = 1; i <= N; i++)
        {
            if (!visited[i] && maze[front - 1][i - 1] == 1)
            {
                visited[i] = 1;
                Q.push(i);
            }
        }
    }
}
int main()
{
    for (int i = 1; i <= N; i++)
    {
        if (visited[i] == 1)
            continue;
        BFS(i);
    }
    return 0;
}

从顶点1开始做深度搜索:
初始状态,从顶点1开始
依次访问过顶点1,2,3后,终止于顶点3
从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
从顶点5回溯到顶点2,并且终止于顶点2
从顶点2回溯到顶点1,并终止于顶点1
从顶点4开始访问,并终止于顶点4

#include <iostream>
#define N 5
using namespace std;
int maze[N][N] = {
    { 0, 1, 1, 0, 0 },
    { 0, 0, 1, 0, 1 },
    { 0, 0, 1, 0, 0 },
    { 1, 1, 0, 0, 1 },
    { 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
    visited[start] = 1;
    for (int i = 1; i <= N; i++)
    {
        if (!visited[i] && maze[start - 1][i - 1] == 1)
            DFS(i);
    }
    cout << start << " ";
}
int main()
{
    for (int i = 1; i <= N; i++)
    {
        if (visited[i] == 1)
            continue;
        DFS(i);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YULIU_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值