使用llama.cpp进行Qwen2.5-3B模型的转换、量化、推理

1.llama.cpp环境安装

拉取项目

git clone https://github.com/ggerganov/llama.cpp

进入目录

cd llama.cpp

 CUDA 版本编译

cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release

 该过程需要等待一段时间

2.模型文件转换

魔搭社区拉取模型文件

git clone https://www.modelscope.cn/Qwen/Qwen2.5-3B-Instruct.git

进入到llama.cpp文件夹下,进行模型文件转换,将safetensor格式转换为gguf格式

python ./convert_hf_to_gguf.py  /mnt/workspace/Qwen2.5-3B-Instruct/ --outfile /mnt/workspace/Qwen2.5-3B-Instruct-fp16.gguf

 转换后默认为半精度FP16类型

3.模型量化

进入到llama.cpp的build/bin目录下,执行命令

./llama-quantize /mnt/workspace/Qwen2.5-3B-Instruct-fp16.gguf /mnt/workspace/Qwen2.5-3B-int4.gguf q4_0

执行完毕后将FP16类型量化为int4类型的模型

可以看到,量化后的模型大小为1.7G,显著下降

4.模型推理

./llama-cli -m /mnt/workspace/Qwen2.5-3B-int4.gguf --color -c 512 -b 64 -n 256 -t 12 -i -r "助手:" -p "你是人工智能助手" -cnv

还有很多参数可选

 也可以进行API的部署

./llama-server -m /mnt/workspace/Qwen2.5-3B-int4.gguf --port 8080

启动一个api,运行在8080端口

经过量化后的模型通过llama.cpp进行推理和部署时候,发现比自行计算所占的显存还要小,有了解的朋友麻烦指点下

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值