/**
* 树状数组 + 离线:
* 看人题解的,思路: 把询问区间[l, r]存下后按r从小到大排序
* 用数组hash[i]记录数字i最后一次出现的位置。用变量curR从1开始每次
* 往右扫到每个询问区间的r。关键在于没扫到新的一个数的时候,如何更新
* 维护这个树状数组。把每次询问的答案记录到ans数组。
* 具体: 当前数num[curR]如果出现过,则最后一次出现位置为hash[num[curR]]
* 更新update(hash[num[curR]], -num[curR]),每次新的数不管是不是出现过,
* 都要update(curR, num[curR]), 因为询问的规则是重复的数只记录一次,那么
* 在前一条语句update(hash[num[curR]], -num[curR])意思是把之前维护的树状数组
* 在hash[num[curR]]的位置减去-num[curR]。
* 为什么要减?
* 每次询问的答案是get_sum(r) - get_sum(l - 1) 也就是前r和减去前(l-1)和
* 可是要保证重复的数只计算一次,这样在用curR扫到当前询问的r的时候,扫到重复数的
* 时候就要减去之前的,并在当前出现的位置加上当前的数。 这样就能保住前缀和正确维护了。
*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <queue>
#include <map>
#include <vector>
#include <algorithm>
#define DEBUG 0
#define INF 0x3fffffff
#define OUTSTARS printf("*****************************\n");
#define MAXN 50005
typedef long long LL;
using namespace std;
LL c[MAXN], ans[200005];
int num[MAXN];
struct Q
{
int l, r, NO;
bool operator < (const Q &a) const {
return r < a.r;
}
} queries[200005];
int n, m;
map<int, int> hash;
int lowbit(int x)
{
return x & (-x);
}
void update(int pos, int val)
{
for(int i = pos; i <= n; i += lowbit(i))
c[i] += val;
}
LL query(int pos)
{
LL ret = 0;
for(int i = pos; i > 0; i -= lowbit(i))
ret += c[i];
return ret;
}
int main()
{
int t;
scanf("%d", &t);
while(t --)
{
scanf("%d", &n);
memset(c, 0, sizeof(c));
for(int i = 1; i <= n;i ++)
scanf("%d", &num[i]);
scanf("%d", &m);
for(int i = 1; i <= m; i ++)
{
scanf("%d%d", &queries[i].l, &queries[i].r);
if(queries[i].l > queries[i].r)
swap(queries[i].l, queries[i].r);
queries[i].NO = i;
}
sort(queries + 1, queries + 1 + m);
hash.clear();
int curR = 1;
for(int i = 1; i <= m; i ++) {
while(curR <= queries[i].r)
{
if(hash[num[curR]] != 0) {
update(hash[num[curR]], -num[curR]);
}
hash[num[curR]] = curR;
update(curR, num[curR]);
curR ++;
}
ans[queries[i].NO] = query(queries[i].r) - query(queries[i].l - 1);
}
for(int i = 1; i <= m; i ++)
printf("%I64d\n", ans[i]);
}
return 0;
}
HDU 3874 Necklace 树状数组 + 离线处理
最新推荐文章于 2019-09-26 20:35:57 发布