CCF-201512-5 矩阵

该博客探讨了一个基于矩阵和向量的离散世界模型,其中矩阵运算遵循异或和与运算。矩阵A和向量b的状态转移通过矩阵快速幂算法进行计算。博主通过实例解释了如何处理状态查询,并提出了矩阵运算的优化思考,如动态分配数组和分块策略。
摘要由CSDN通过智能技术生成

问题描述

  创造一个世界只需要定义一个初状态和状态转移规则。
  宏观世界的物体运动规律始终跟物体当前的状态有关,也就是说只要知道物体足够多的状态信息,例如位置、速度等,我们就能知道物体之后任意时刻的状态。
  现在小M创造了一个简化的世界。
  这个世界中,时间是离散的,物理规律是线性的:世界的初始状态可以用一个m维向量b(0)表示,状态的转移方式用m×m的矩阵A表示。
  若已知这个世界当前的状态是b,那么下一时刻就等于b左乘状态转移矩阵A,即Ab。
  这个世界中,物体的状态也是离散的,也就是说可以用整数表示。再进一步,整数都可以用二进制编码拆分为有限位0和1。因此,这里的矩阵A和向量b的每个元素都是0或1,矩阵乘法中的加法运算视为异或运算(xor),乘法运算视为与运算(and)。
  具体地,设矩阵A第i行第j列的元素为ai, j,向量b的第i个元素为bi。那么乘法Ab所得的第k个元素为
  (ak,1 and b1) xor (ak,2 and b2) xor ⋯ xor (ak,m and bm)
  矩阵和矩阵的乘法也有类似的表达。
  小M发现,这样的矩阵运算也有乘法结合律,例如有A(Ab)=(AA)b=A2b。
  为了保证自己创造的世界维度不轻易下降,小M保证了矩阵A可逆,也就是说存在一个矩阵A-1,使得对任意向量d,都有A-1Ad=d。
  小M想了解自己创造的世界是否合理,他希望知道这个世界在不同时刻的状态。
  具体地,小M有n组询问,每组询问会给出一个非负整数k,小M希望你帮他求出Akb。

输入格式

  输入第一行包含一个整数m,表示矩阵和向量的规模。
  接下来m行,每行包含一个长度为m的01串,表示矩阵A。
  接下来一行,包含一个长度为m的01串,表示初始向量b(0)。(b(0)是列向量,这里表示它的转置)
  注意:01串两个相邻的数字之间均没有空格。
  接下来一行,包含一个正整数n,表示询问的个数。
  最后n行,每行包含一个非负整数k,表示询问 Akb(0)
  注意:k可能为0,此时是求 A0b(0)=b

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值