2-3树与2-3-4树总结-java版

本文详细介绍了2-3树和2-3-4树的数据结构特性,包括它们的简介、插入操作和删除操作。2-3树是一种自平衡的多路查找树,具有良好的查询效率。插入操作中,当节点达到3个key时会分裂。删除操作则涉及到节点的不同类型和位置,需要通过后继节点替换和树的结构调整来保持平衡。2-3-4树是2-3树的扩展,插入操作基本相同,而删除操作相对更复杂。
摘要由CSDN通过智能技术生成

目录

2-3树

简介

插入

删除

2-3-4树

简介

插入

删除


2-3树

简介

2-3树是一棵自平衡的多路查找树,它并不是一棵二叉树,具有如下性质:

(1)每个节点有1个或2个key,对应的子节点为2个子节点或3个子节点;

(2)所有叶子节点到根节点的长度一致;

(3)每个节点的key从左到右保持了从小到大的顺序,两个key之间的子树中所有的key一定大于它的父节点的左key,小于父节点的右key。

其实不是的,实际上2-3树的查询时间复杂度也是为 O(logN) ,而出现这种多路查找树,主要是跟内存与磁盘交互有关。我们知道在内存IO的速度比磁盘IO要快的多的多,但是同样空间大小的内存比硬盘要贵的多的多,像TB级别的数据库不可能全部读出来放到内存中去,太过昂贵,而且也没必要,大部分数据是不经常用的,所以就需要内存与外存互相结合,而如果用平衡二叉树这种数据结构,在大数据量的情况下,树肯定会很高,此时查个数据对磁盘读个几千上万次那肯定是不行的(有人可能说把数据的索引文件全部放到内存中,然后把源数据放在硬盘中,这样在内存中定位到源数据Id,然后去外存中取源数据,这样肯定是不行的,不要以为索引文件很小,像搜索引擎的倒排索引文件比源文件还要大),所以用多路查找树这种数据结构,高阶的情况下,树不用很高就可以标识很大的数据量了,检索次数就大大减少了,用这种数据结构去磁盘中存取数据,磁盘IO次数的次数也会很少。

因为2-3树是一棵自平衡的多路查找树,所以构建跟维系一棵2-3树,就比二叉平衡树要复杂的多了。

2-3查找树的性质:

1)如果中序遍历2-3查找树,就可以得到排好序的序列;

2)在一个完全平衡的2-3查找树中,根节点到每一个为空节点的距离都相同。(这也是平衡树中“平衡”一词的概念,根节点到叶节点的最长距离对应于查找算法的最坏情况,而平衡树中根节点到叶节点的距离都一样,最坏情况也具有对数复杂度。)

插入

2-3树的插入操作,首先一定是在叶子节点,另外如果2-3树中已存在当前插入的key,则插入失败, 下面就在这两点的前提下,进行2-3树插入流程的分析:

(1)如果待插入的节点只有1个key,则直接插入即可;

(2)如果待插入的节点有2个key,则对节点进行分裂,即2个key加上待插入的key,这3个key分裂成1个key跟两个子节点,然后将分裂之后的3个key中的父节点看作向上层插入的key,然后重复(1)、(2)步骤,直到满足2-3树的定义性质。

如下图所示,插入“7”,而此时节点“5”只有一个key,则直接插入即可,形成节点“5 7”。

​ 此时如果再插入“6”,而节点“5 7”已经有2个key了,所以需要先进行分裂。

“5 7”节点与新插入的“6”分裂之后,如下图所示,

此时需要将“6”向父节点插入,而父节点“13 30”又包含2个key,则需要再次分裂,即如下图所示,“13 30”与“6”分裂成父节点为“13”,子节点为“6”跟“30”

再将节点“13”看作向父节点插入,而此时父节点“50”只有一个key,则将“13”与“50”直接合并即可,如下图所示,完成节点的插入调整,如下图所示


删除

关于2-3树节点的删除,首先,如果删除的key不存在,则删除失败,然后在此前提下来分析节点的删除。跟讲平衡二叉树的节点删除类似,总结也是两个判断:①删除的是什么节点?②删除了节点之后是否符合满足2-3树的性质?

​ 2-3树有4种节点:

1.仅1个key的叶子节点;

2.有 2个key的叶子节点;

3.仅1个key的非叶子节点;

4.有2个key的非叶子节点。即 1个key与2个key的节点 和 是否为叶子节点 的组合。下面就从简单到复杂的情况开始分析:

(1)当删除的节点是2个key的叶子节点,则将要删除的目标key删除即可,此时原来待删除的2个key的叶子节点,变成1个key的叶子节点,但是符合2-3树;

(2)当删除的节点是2个key的非叶子节点,则此时使用中序遍历找到待删除节点的后继节点,然后将后继节点与待删除节点位置互换,此时就将问题转化为删除节点为叶子节点(平衡树的非叶子节点中序遍历后继节点肯定叶子节点),如果该叶子是2个key,则跟情况(1)一样,如果该节点是只有1个key,则跟后面的情况(4)一样;

(3)当删除的节点是1个key的非叶子节点,实际上操作跟情况(2)是一样的,即使用中序遍历找到待删除节点的后继节点,然后将后继节点与待删除节点位置互换,此时问题转化为删除节点为叶子节点;

(4)当删除的节点是1个key的叶子节点,则将节点删除,此时树肯定不满足2-3树的性质,也即肯定需要调整,但要分情况来进行调整,而总结起来就是当前待删除的1个key的叶子节点,兄弟节点与父节点,分别是1个key还是2个key,即:

a.当父节点是1个key(即此时仅有一个兄弟节点),兄弟节点是2个key,则将兄弟节点的一个key上移成父节点,而父节点下移成子节点,也即跟2个key中插入新节点类似,拆成一父两子,此时树满足2-3树,完成调整。

b.当父节点是1个key,兄弟节点也是1个key,则此时将父节点与兄弟节点合并,将合并后的节点看成当前节点,然后重复(4)的判断,即判断合并后的当前节点的兄弟节点与父节点的情况,然后走对应的a.b.c处理,直到满足2-3树,完成调整。

c.当父节点是2个key,即此时有两个兄弟节点,而兄弟节点又可能有多种情况,穷举起来有:删除节点的位置左中右3个,以及另外两个兄弟节点是否为1个key或2个key的4种情况,总共3*4=12种。即,

i.若删除的是左或右节点,且中间节点只有1个key,则此时父节点的一个key下移,与中间节点合并,此时父节点为1个key,两个子节点,树满足2-3树,完成调整;

​ ii.若删除的是左或右节点,且中间节点有2个key,则此时父节点的一个key下移,中间节点的一个key上移与父节点合并,此时父节点为2个key,3个子节点,树满足2-3树,完成调整;

iii.若删除的是中间节点,且右节点只有1个key,则此时父节点的一个key下移,与右节点合并,此时父节点为1个key,两个子节点,树满足2-3树,完成调整;

iv.若删除的是中间节点,且右节点有2个key,则此时父节点的一个key下移,右节点的一个key上移与父节点合并,此时父节点为2个key,3个子节点,树满足2-3树,完成调整。

计:i与ii删除左或右节点两种情况,中间节点1个key或2个key两种情况,兄弟节点1个key或2个key两种情况,总共 2x2x2=8 种;删除中间节点一种情况,iii与iv右节点1个key或2个key两种情况,左节点1个或2个key两种情况,总共 1x2x2=4 种; 4+8=12 种全齐,虽然场景有12种,但是处理的方式只有2种,一种是父节点下移与子节点合并,另一种是父节点下移成单独一个子节点,然后2个key的子节点上移一个key与父节点合并。

如下图所示,最简单的删除情况(1),待删除的节点是2个key,直接对节点的key “5” 删除即可,

2-3树删除情况(1)

 若删除节点是情况(2),如下图所示,删除“100”,而且此时“100”是非叶子节点且2个key,则找到后继节点“120”与“100”互换位置,然后删除“100”

2-3树删除情况(2)-1

 

结果如下图所示,将问题转化为删除一个key的叶子节点,且父节点为2个key,即为情况(4),删除的节点为右节点,且中间节点为一个key,也即为情况(4)中c的i,所以此时需要将父节点的一个key下移与中间节点合并

2-3树删除情况(2)-2

  

结果如下图所示,将父节点的一个key “120”下移,与中间节点“80”合并,最后如下右图所示,2-3树调整完成。

2-3树删除情况(4ci)

 

再讲另外一种,情况(4)中c的iv,如下图所示,删除节点“22”,而右兄弟节点是2个key,则需要将父节点的“30”下移成中间节点,然后右兄弟的一个key“40”上移与父节点合并,

2-3树删除情况(4civ)-1

  

此时情况(4)中c的iv调整结果如下右图所示,

2-3树删除情况(4civ)-2

  

最后再讲一种节点删除的情况,就是满二叉树的情况,根据定义的性质,满二叉树也符合2-3树,如果当满二叉树要删除叶子节点时,是符合情况(4)中的b的,即将父节点与兄弟节点合并,此时树的层数显然不平衡,即,将合并后的节点看作被删除的当前节点,而当前节点的兄弟节点与父节点依然是都是一个key,符合情况(4)的b,将父节点与兄弟节点合并,直至树平衡。

 

2-3树满二叉树删除的情况(4b)

另外,实际上节点删除的情况中(2)(3)是可以整合到一起去处理的,即,删除节点是非叶子节点,无论待删除节点的key数是多少,都用中序排序找到后继节点,然后把问题转化为删除一个key的叶子节点去处理。

​ 备注:对于节点删除中的(4)的 b 可能没讲明白,再补充说明一下,如下图删除节点“10”,符合(4)的 b 情况,则父节点“13”与兄弟节点“18”合并,

2-3树删除的情况(4b)-1

  合并之后如下图所示,此时符合(4)中 c 的 ii 情况,则父节点的key“22”下移,中间节点的key“30”上移,

2-3树删除的情况(4b)-2

​  变换结果如下图所示,此时2-3树已经调整完成。这里需要注意的点是,由于之前说父子节点key的上下移对于叶子节点来说并没有子节点,但对于非叶子节点的变换是对应左旋与右旋的,所以上一步的变换,是以节点“22”做左旋操作,由父节点“降级”为子节点,而原本子节点“30”晋升为父节点,并将“30”的左子节点出让给“22”作为右子节点。

2-3树删除的情况(4b)-3

2-3-4树

简介

2-3-4树只是在2-3树的基础上进行了扩展。2-3-4树也是一棵自平衡的多路查找树,具有如下性质:

(1)任一节点只能是1个或2个或3个key,对应的子节点为2个子节点或3个子节点或4个子节点;

(2)所有叶子节点到根节点的长度一致;

(3)每个节点的key从左到右保持了从小到大的顺序,两个key之间的子树中所有的key一定大于它的父节点的左key,小于父节点的右key,对于3个key的节点,两两key之间也是如此。

插入

2-3-4树插入节点跟删除节点的处理,实际上跟2-3树很像,特别是插入节点,基本上跟2-3树是一模一样,只是分裂的条件由2个key变成了3个key而已,即,

(1)如果待插入的节点不是3个key,则直接插入即可;

(2)如果待插入的节点有3个key,则对节点进行分裂,即3个key加上待插入的key,这4个key分裂成1个key跟2个子节点,然后将分裂之后的4个key中的父节点看作向上层插入的key,然后重复(1)、(2)步骤,直到满足2-3-4树的定义性质。

如下图所示,插入“125”,而此时待插入节点有3个key,需要对节点进行分裂,

“100 125 130”节点分裂之后,如下图所示,分裂成父节点“120”与两个子节点“100”与“125 130”,此时将父节点“120”看作向上层插入的key,

而又由于“120”的上层节点是“60 70 80”是3个key的节点,则需要对3个key节点进行分裂,如下图所示,分裂成父节点”70”与子节点“60”与“80 120”,

将父节点“70”看作向上层插入的key,此时上层节点“22 50”是2个key,则直接插入即可,结果如下图所示,此时满足2-3-4树,完成调整。

2-3-4树节点的插入就差不多这样了,也比较简单的,其实从前面到这里可以看出一些规律,就是不管是二叉查找树也好,平衡二叉树,以及2-3树的节点插入,相对来说都算简单,但是对于一棵树节点的删除却比较复杂,有的甚至需要不断的回溯到根节点才能把树调整平衡。
 

删除

所以,关于2-3-4树节点的删除也不简单,至少比节点的插入要复杂麻烦的多,但这里就讲个大概,类比2-3树节点删除去推就可以推出来,思路是一致的。

2-3-4树节点的删除,首先,如果删除的key不存在,则删除失败。类比2-3树总结也是两个判断:①删除的是什么节点?②删除了节点之后是否符合满足2-3-4树的性质?

2-3-4树有4种节点,1个key与非1个key的节点 和 是否为叶子节点 的组合,即:1.非1个key的叶子节点;2.仅1个key的叶子节点;3.非1个key的非叶子节点;4.仅1个key的非叶子节点。

2-3-4节点删除操作:

(1)当删除的节点是非1个key的叶子节点,则将要删除的目标key删除即可;

(2)当删除的节点是非叶子节点,无论待删除节点的key是多少个,先使用中序遍历找到待删除节点的后继节点,然后将后继节点与待删除节点位置互换,此时就将问题转化为删除节点为叶子节点(平衡树的非叶子节点中序遍历后继节点肯定叶子节点),如果该叶子是非1个key,则跟情况(1)一样,如果该节点是只有1个key,则跟后面的情况(3)一样;

(3)当删除的节点是1个key的叶子节点,则将节点删除,此时树肯定需要调整,即:

a.当父节点是1个key(即此时仅有一个兄弟节点),兄弟节点是非1个key,则将兄弟节点的一个key上移成父节点,而父节点下移成子节点,此时树满足2-3-4树,完成调整。

b.当父节点是1个key,兄弟节点也是1个key,则此时将父节点与兄弟节点合并,将合并后的节点看成当前节点,然后重复(3)的判断,即判断合并后的当前节点的兄弟节点与父节点的情况,然后走对应的a.b.c处理,直到满足2-3-4树,完成调整。

c.当父节点是非1个key,即此时有两个或三个兄弟节点,此时看相邻兄弟节点是否“丰满”,也即是否为3个key,如下,

i.若删除节点的相邻兄弟节点为非3个key,则父节点的一个key下移,与相邻兄弟节点合并,此时树满足2-3树,完成调整;

ii.若删除节点的相邻兄弟节点为3个key,则父节点的一个key下移成1个key的节点,相邻兄弟节点的一个key上移与父节点合并,此时树满足2-3树,完成调整;

下面画几个图演示一下吧,如下图所示,符合(3)中的 b 情况,即对兄弟节点“18”与父节点“13”合并,

合并之后,如下图所示,此时符合(3)中 c 的 ii 情况,即对节点“22”做左旋操作(参考2-3树文章最后的备注部分),

左旋结果如下图所示,此时2-3-4树调整完成。

最后再重复一点,关于2-3-4树节点删除情况(3)中的 b :“将合并后的节点看成当前节点,然后重复(3)的判断,即判断合并后的当前节点的兄弟节点与父节点的情况” 这句话,由于此时合并后的当前节点,其兄弟节点,是带有子节点的,所以此时重复(3)的判断之后,如果是 c 中的 i 或 ii 情况,对于(兄弟)key的上移与(父)key的下移,对应的子节点是需要出让的,即此时的变换,实际上为左旋或右旋,具体是左旋还是右旋,看对应的场景。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值