MVF 3D Lidar point clouds
1.Motivation对于透视图和BEV,两者都有各自的优势。其中透视图在稀疏的点云上进行小物体的检测性能较强,而BEV可以保证物体的距离不变形,即不会发生物体重叠。对于原先的voxel方法,即hard voxel,存在占用内存大,数据损失的缺点,因此如何利用点云内所有的点的信息成为一个问题。2. Contributions论文提出一个end-to-end的算法,使用点云中的BEV和透视图进行信息互补。论文针对hard voxel提出了一种新的dynamic voxel,支持动态体素化,相








