Flink Windows Join 都是 Inner Join
两个流join时,先做join操作,形成JoinedStream,然后再指定Window,最后接着join后的transform操作。
案例:
inputStream1:DataStream[(Long,String,Int)] = ...
inputStream2:DataStream[(String,Long,Int)] = ...
//通过DataStream Join方法将两个数据流关联
inputStream1.join(inputStream2)
//指定inputStream1的关联Key
.where(_._1)
//指定inputStream2的关联Key
.equalTo(_._2)/
//指定Window Assigner
.window(TumblingEventTimeWindows.of(Time.milliseconds(10)))
.apply(<JoinFunction>) //指定窗口计算函数
根据窗口的不同,数据计算的方式不同
根据窗口的选择,依次对应于:
滚动窗口关联:Tumbling Window Join
滑动窗口关联:Sliding Window Join
会话窗口关联:Session Window Join
间隔关联:Interval Join
间隔关联 Join
间隔关联与其他窗口关联不同,间隔关联的数据元素关联范围不依赖窗口划分,而是通过DataS

本文探讨了Flink流处理中的Join操作,重点讲解了Flink Windows Join如何实现Inner Join,包括间隔关联Join的原理。同时,文章介绍了Flink SQL中的Join算法,如归并连接、哈希连接,以及流式SQL中的时间窗口Join和基于历史表的连接方式。
最低0.47元/天 解锁文章
1825

被折叠的 条评论
为什么被折叠?



