PID控制算法简单原理学习+Python演示
PID控制算法学习
这篇文章是转载自:原文链接,原文作者。
这里仅仅是记录一下自己的学习过程加一些简单的代码注释补全。
1. PID算法控制运用在哪些地方?
PID:比例(Proportion),积分(Integral),微分(Differential)
PID算法可以用来控制温度,压强,流量,化学成分,速度等等。汽车的定速巡航;伺服驱动器中的速度位置控制;冷却系统的温度;液压系统的压力等都可以通过PID算法实现,很好的保证系统的稳定性。
2. PID算法的原理
先了解几个概念:
偏差/误差 e:某时刻的系统的输出值(output)和目标值(target)之差
参数 | 对应概念 |
---|---|
K p K_p Kp | 比例系数 |
K i K_i Ki | 积分系数 |
K d K_d Kd | 微分系数 |
T i T_i Ti | 积分时间 |
T d T_d Td | 微分时间 |
原理图
如图,当得到输出后,将输出和输入的差值作为偏差,将这个偏差信号经过比例,积分,微分3种运算方式叠加后再以一定的方式加入到输入中,从而控制最终的结果,达到想要的输出值。
公式
PID的公式原理:
e
(
t
)
=
s
(
t
)
−
s
^
(
t
)
e(t) = s(t) - \hat{s}(t)
e(t)=s(t)−s^(t)
y ( t ) = K p e ( t ) + 1 T i ∫ e ( t ) d t + T d d e ( t ) d t y(t) = K_pe(t) + {1\over T_{i}} \int e(t)dt + T_d {d e(t) \over dt} y(t)=Kpe(t)+Ti1∫e(t)dt+Tddtde(t)
如果需要在计算机上实现,需要将其离散化:
u [ k ] = K p e [ k ] + K i ∑ n = 0 k e [ n ] + K d ( e [ k ] − e [ k − 1 ] ) u[k] = K_p e[k] + K_i \sum_{n=0}^k e[n] + K_d(e[k]-e[k-1]) u[k]=Kpe[k]+Ki∑n=0ke[n]+Kd(e[k]−e[k−1])
( N o t e t h a t : T T i = K i , T T d = K d ) (Note \ that: \ {T \over T_i} = K_i, \ {T \over T_d} = K_d) (Note that: TiT=Ki, TdT=Kd)
注:这里的 u [ k ] u[k] u[k]是PID控制的输出,也就是是控制量,而不是系统的输出。表示的是系统输出应该增加(减少)的量。
比例系数 K p K_p Kp:
增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。
比例控制不能消除稳态误差。
注:稳态误差可以这么理解:(知乎的例子)假设一个泳池每单位时间漏水0.1,现有蓄水0.8,只用propotion的话并且 K p = 0.5 K_p=0.5 Kp=0.5的时候,注水0.2 * 0.5 = 0.1。这样注水后水池有水0.8+0.1-0.1 = 0.8。这样的话就永远注不满水。这就是稳态误差的一个例子。
积分系数 K i K_i Ki:
使系统消除稳态误差,提高无差度。积分控制的作用是,只要系统有误差存在,积分调节就进行,积分控制器就不断地积累,输出控制量,直至无差,积分调节停止,积分调节输出一常值。因而,只要有足够的时间,积分控制将能完全消除误差,使系统误差为零,从而消除稳态误差。积分作用的强弱取决于积分时间常数Ti,Ti越小,积分作用就越强,积分作用太强会使系统超调加大,甚至使系统出现振荡,反之Ti大则积分作用弱。加入积分调节可使系统稳定性下降,动态响应变慢。
注:用注水的例子来说,假设不仅使用了比例系数,也使用积分系数,那么就算稳态误差存在,由于积分一直在增长,控制量也就会增长而不是停在0.1每单位的注水,这样最终我们能达到1的满水状态。
微分系数 K d K_d Kd:
微分控制可以减小超调量,克服振荡,使系统的稳定性提高,同时加快系统的动态响应速度,减小调整时间,从而改善系统的动态性能。
微分的控制作用跟偏差的变化的速度有关,微分控制能够预测偏差,产生 超前的校正作用,有助于减少超调。
注:微分系数在注水的例子里可以理解为:如果临近满水的状况下,每次计算出来的注水量仍然很大,这时候就可以算上微分系数的分量作为缓冲,即减少超调量的震荡。
3. PID算法的python实现
首先建立一个PID的算法模块,算法原理就是上面的式子,保存为PID.py,如下:
import time
class PID:
def __init__(self, P, I, D):
# 输入系数
self.Kp = P
self.Ki = I
self.Kd = D
self.sample_time = 0.00
self.current_time = time.time()
self.last_time = self.current_time
self.clear()
def clear(self):
self.SetPoint = 0.0 # 真实期望值 0.0
self.PTerm = 0.0
self.ITerm = 0.0
self.DTerm = 0.0
self.last_error = 0.0
self.int_error = 0.0
self.output = 0.0
def update(self, feedback_value):
# 计算误差 - 真实误差
error = self.SetPoint - feedback_value
# 计算经过的时间(微分的时间) - delta t
self.current_time = time.time()
delta_time = self.current_time - self.last_time
# 计算误差的变化(微分的误差) - delta e
delta_error = error - self.last_error
if (delta_time >= self.sample_time):
self.PTerm = self.Kp * error # 比例系数项
self.ITerm += error * delta_time # 积分系数项
self.DTerm = 0.0
if delta_time > 0:
self.DTerm = delta_error / delta_time # 微分系数项
self.last_time = self.current_time # 记录新时间节点
self.last_error = error # 记录新误差
self.output = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm)
def setSampleTime(self, sample_time):
self.sample_time = sample_time
然后在相同路径下建立一个test_pid.py,实现PID控制的算法示意,如下:
import PID #导入上面的PID算法
import time
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import make_interp_spline
def test_pid(P, I , D, L):
# 初始化实例
pid = PID.PID(P, I, D)
# 真实期望值1.1
pid.SetPoint=1.1
# 开始采样时间.01
pid.setSampleTime(0.01)
# 采样数量
END = L
feedback = 0
feedback_list = []
time_list = []
setpoint_list = []
for i in range(1, END):
pid.update(feedback)
output = pid.output
feedback += output # PID控制系统的函数 - 返回的修正值
time.sleep(0.01)
feedback_list.append(feedback) # 记录每次PID算法调整后的输出值
setpoint_list.append(pid.SetPoint)
time_list.append(i)
# 画图部分
time_sm = np.array(time_list)
time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
# 插值 - 绘制平滑曲线,为了更好的展示效果
feedback_smooth = make_interp_spline(time_list, feedback_list)(time_smooth)
plt.figure(0)
plt.grid(True)
plt.plot(time_smooth, feedback_smooth,'b-')
plt.plot(time_list, setpoint_list,'r')
plt.xlim((0, L))
plt.ylim((min(feedback_list)-0.5, max(feedback_list)+0.5))
plt.xlabel('time (s)')
plt.ylabel('PID (PV)')
plt.title('PythonTEST PID--xiaomokuaipao',fontsize=15)
plt.grid(True)
plt.show()
if __name__ == "__main__":
test_pid(1.2, 1, 0.001, L=100)
最终的输出如下:
其中,红色线是目标值(setpoint),蓝色线是在当前
K
p
K_p
Kp,
K
i
K_i
Ki,
K
d
K_d
Kd参数下的震荡结果,最终趋于目标值,实现了控制。
从而用python实现了PID算法的简单示意。
4. PID调试的一些经验
PID调试的一般原则:
在输出不震荡时,增大比例增益;
在输出不震荡时,减少积分时间常数;
在输出不震荡时,增大微分时间常数;
PID调节口诀:
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢,微分时间应加长
理想曲线两个波,前高后低四比一
一看二调多分析,调节质量不会低