来源
POJ 3702
描述
给出三维空间中的n个点(不超过10个),求出n个点两两之间的距离,并按距离由大到小依次输出两个点的坐标及它们之间的距离。
关于输入
输入包括两行,第一行包含一个整数n表示点的个数,第二行包含每个点的坐标(坐标都是整数)。点的坐标的范围是0到100,输入数据中不存在坐标相同的点。
关于输出
对于大小为n的输入数据,输出n*(n-1)/2行格式如下的距离信息:
(x1,y1,z1)-(x2,y2,z2)=距离
其中距离保留到数点后面2位。
例子输入
4
0 0 0 1 0 0 1 1 0 1 1 1
例子输出
(0,0,0)-(1,1,1)=1.73
(0,0,0)-(1,1,0)=1.41
(1,0,0)-(1,1,1)=1.41
(0,0,0)-(1,0,0)=1.00
(1,0,0)-(1,1,0)=1.00
(1,1,0)-(1,1,1)=1.00
提示
注意:
冒泡排序满足下面的性质,选择排序和快速排序(qsort或sort)需要对下面的情况进行额外处理
使用冒泡排序时要注意边界情况的处理,保证比较的两个数都在数组范围内
- 对于一行输出中的两个点(x1,y1,z1)和(x2,y2,z2),点(x1,y1,z1)在输入数据中应出现在点(x2,y2,z2)的前面。
比如输入:
2
0 0 0 1 1 1
输出是:
(0,0,0)-(1,1,1)=1.73
但是如果输入:
2
1 1 1 0 0 0
输出应该是:
(1,1,1)-(0,0,0)=1.73 - 如果有两对点p1,p2和p3,p4的距离相同,则先输出在输入数据中靠前的点对。
比如输入:
3
0 0 0 0 0 1 0 0 2
输出是:
(0,0,0)-(0,0,2)=2.00
(0,0,0)-(0,0,1)=1.00
(0,0,1)-(0,0,2)=1.00
如果输入变成:
3
0 0 2 0 0 1 0 0 0
则输出应该是:
(0,0,2)-(0,0,0)=2.00
(0,0,2)-(0,0,1)=1.00
(0,0,1)-(0,0,0)=1.00\
下面是一个Passed的不知名人士提供的代码,因为交作业来不及所以就贴上去了.今天晚上我将对这个代码做出自己的解答.
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<assert.h>
#include<ctype.h>
#include<stdlib.h>
#include<math.h>
using namespace std;
struct point{
int x,y,z;
}P[200];
struct ANS{
int h1,h2;
double juli;
}J[10100];
double ce(point a1,point a2)
{
return sqrt((a1.x-a2.x)*(a1.x-a2.x)+(a1.y-a2.y)*(a1.y-a2.y)+(a1.z-a2.z)*(a1.z-a2.z));
}
bool cmp(ANS a1,ANS a2)
{
if(a1.juli!=a2.juli)return a1.juli>a2.juli;
else if(a1.h1!=a2.h1)return a1.h1<a2.h1;
else return a1.h2<a2.h2;
}
int