全连接层
几乎所有的博客都会这么解释全连接层:
然后我就特别不明白一点,为什么两层却有三维度的矩阵?其实这根本不是问题,全连接层的目的是将所有的输入线性关联起来,用不同的权重,获得不同的输出,因此它可以解释为一个矩阵:
a
=
W
X
a = WX
a=WX。
需要去理解它的本质的,只会FCN的调用是没有意义的。
1*1卷积
11卷积核可以借用这种图(这张图是摘抄一篇博客上的)解释:
1132是一个11的卷积核,我们可以定义为W,X是feature map, 大小是 HWC, 那么W将会和X中的每一个元素分别进行全连接,获得新的张量(元素大小为11C,X中的元素个数为H*W,实际上就是X中每个元素的特征):
R
e
s
u
l
t
=
X
i
,
j
∗
W
,
(
i
,
j
)
∈
(
H
,
W
)
Result= X_{i,j}*W, (i,j)\in(H,W)
Result=Xi,j∗W,(i,j)∈(H,W) 。