神经网络基础笔记

全连接层

几乎所有的博客都会这么解释全连接层:
在这里插入图片描述然后我就特别不明白一点,为什么两层却有三维度的矩阵?其实这根本不是问题,全连接层的目的是将所有的输入线性关联起来,用不同的权重,获得不同的输出,因此它可以解释为一个矩阵: a = W X a = WX a=WX
需要去理解它的本质的,只会FCN的调用是没有意义的。

1*1卷积

11卷积核可以借用这种图(这张图是摘抄一篇博客上的)解释:
在这里插入图片描述1
132是一个11的卷积核,我们可以定义为W,X是feature map, 大小是 HWC, 那么W将会和X中的每一个元素分别进行全连接,获得新的张量(元素大小为11C,X中的元素个数为H*W,实际上就是X中每个元素的特征): R e s u l t = X i , j ∗ W , ( i , j ) ∈ ( H , W ) Result= X_{i,j}*W, (i,j)\in(H,W) Result=Xi,jW,(i,j)(H,W)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值