给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
示例:
输入: [1,2,3,null,5,null,4]
输出: [1, 3, 4]
解释:
1 <---
/ \
2 3 <---
\ \
5 4 <---
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/binary-tree-right-side-view
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
画了二叉树,简单的分析了一下,养成一个先写伪代码的好习惯。
最开始, 以为只要访问右子树的右节点,但如果左子树比右子树更深,那么是可以看到左子树上的节点的:
其实,我应该很快就明白,这是一个从右开始的层次遍历,那么问题就好办了。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> right_view;
if(!root)
return right_view;
queue<TreeNode*> layer;
layer.push(root);
while(layer.empty()==0)
{
right_view.push_back(layer.front()->val);
int size = layer.size();
while(size--)
{
TreeNode*tmp = layer.front();
layer.pop();
if(tmp->right)
layer.push(tmp->right);
if(tmp->left)
layer.push(tmp->left);
}
}
return right_view;
}
};
我还看到了一种解法,也很有意思:right_view 是统计出的最右边的元素,那么right_view的size其实可以作为层数的,这样就不需要多使用一个队列,而是直接进行遍历。