HDU4599 Dice概率期望DP

这题有三个函数,

F(N)表示有数字连续向上N次操作数的期望值;

H(N)表示数字1连续向上N次操作数的期望值;

G(N)表示数字1向上N次的操作数的期望值;

题目给定N求,满足G(m1)>=F(N)的最小m1与G(m2)>=F(N)的小m2.

由于N很大,所有思路是求出F(N)、H(N)、G(N)的通式。

其中G(N)=6N;H(N)=(6^n-1)/5*6;F(N)=H(N-1)+1;

所以m2=(6^n-1)/5;m1=(6^(n-1)-1)/5+1;

剩下的就是写代码问题了。

#include<stdio.h>
#define mod 2011
int pow(int a,int b,int m){
	int ans=1;
	while(b){
		if(b&1){
			ans=ans*a%m;			
		}
		a=a*a%m;
		b=b>>1;
	}
	return ans;
}
int ex(int a,int b,int &x,int &y){
	int d;
	if(b==0){
		x=1;y=0;
		return a;
	}
	d=ex(b,a%b,y,x);
	y-=a/b*x;
	return d;
}

int inv(int a,int n){
	int d,x,y;
	d=ex(a,n,x,y);
	if(d==1)return (x%n+n)%n;
	else return -1;
}
int main(){
	int n,m1,m2;
	int ni=inv(5,mod);
	while(~scanf("%d",&n)&&n){
		if(n==1){printf("1 1\n");continue;}
		//else if(n==2){printf("2 7\n");continue;}
		m2=(pow(6,n,mod)-1+mod)*ni%mod;
		m1=(pow(6,n-1,mod)-1+mod)*ni%mod;
		m1=(m1+1)%mod;
		printf("%d %d\n",m1,m2);
	}
	return 0;
}

		



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值