数学奇思-比例:点:线:面

本文探讨了数学中比例的表示方式,如何通过面积和体积来表达比例关系。通过实例解释了从点到线再到面的抽象过程,揭示了在忽略细节后,比例可以转化为直观的几何尺寸比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上次交流米老师留下了一个思考给我们,比例为什么可以用面积表示,体积表示,通过自己查博客,和同学沟通,发现这是数学上一个惯用的思维方式,就是忽略:

我们先看一组球,一共100个,其中30个红球,70个黑球,均匀分布在一个平面上:

类似如此:

我们研究的是红球白球的比例,那么我们忽略球排布的方位,将红球放在一起,黑球放在一起,排列成这样:

 

我们在数学中,有个概念,点组成线,线组成面,具体是怎么组成的呢

一些独立的点,连城一个固定的形状,如果我们一直后退,在某个时刻,我们是不是就以为这些点就是条线了,本来是独立的点,点之间有间隙,在我们可接受的范围内,就忽略了点之间的间隙,就成为成为了线:

 

这个道理推广开:

我们先把横向的点,忽略间隙,抽象成了线:

 

然后再把纵向上的线的间隙,忽略,抽象成了面:

 

映射到体积也是一样的,这里就不一一列举了,所以,一个比值是可以映射成线段长度,面积大小等直观去看的,因为,抽象成数字之间的比值的时候,就已经忽略了所有的不同,仅仅是两个东西,在你认为合适的可接受的维度进行的一个多少比较。

 

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值