关于树的几个ensemble模型的比较(GBDT、xgBoost、lightGBM、RF)
决策树的Boosting方法比较
原始的Boost算法是在算法开始的时候,为每一个样本赋上一个权重值,初始的时候,大家都是一样重要的。在每一步训练中得到的模型,会使得数据点的估计有对有错,我们就在每一步结束后,增加分错的点的权重,减少分对的点的权重,这样使得某些点如果老是被分错,那么就会被“严重关注”,也就被赋上一个很高的权重。然后等进行了N次迭代(由用户指定),将会得到N个简单的分类器(bas
原创
2017-03-31 17:22:23 ·
25107 阅读 ·
3 评论