65. 两个排序数组的中位数 

65. 两个排序数组的中位数 

两个排序的数组A和B分别含有m和n个数,找到两个排序数组的中位数,要求时间复杂度应为O(log (m+n))。

样例

样例1

输入:

A = [1,2,3,4,5,6]

B = [2,3,4,5]

输出: 3.5

样例2

输入:

A = [1,2,3]

B = [4,5]

输出: 3

挑战

时间复杂度为O(log n)

说明

中位数的定义:

  • 这里的中位数等同于数学定义里的中位数。

  • 中位数是排序后数组的中间值。

  • 如果有数组中有n个数且n是奇数,则中位数为A[(n-1)/2]A[(n−1)/2]。

  • 如果有数组中有n个数且n是偶数,则中位数为 (A[n / 2] + A[n / 2 + 1]) / 2(A[n/2]+A[n/2+1])/2.

  • 比如:数组A=[1,2,3]的中位数是2,数组A=[1,19]的中位数是10。

 


 



public class Solution {

    /*

     * @param A: An integer array

     * @param B: An integer array

     * @return: a double whose format is *.5 or *.0

     */

    public double findMedianSortedArrays(int[] A, int[] B) {

        int retLen = A.length + B.length;

            int m = A.length;

            int n = B.length;

            int[] ret = new int[retLen];

            retLen--;

            m--;

            n--;

            int end=retLen/2;

            while (retLen >= 0) {

                if(0 <= m &&0 <= n){

                    if (A[m] >= B[n]) {

                        ret[retLen] = A[m];

                        m--;

                    } else {

                        ret[retLen] = B[n];

                        n--;

                    }

                }else if(0 <= m){

                     ret[retLen] = A[m];

                        m--;

                }else if(0 <= n){

                     ret[retLen] = B[n];

                        n--;

                }

                retLen--;

            }

             retLen=ret.length-1;

            if (ret.length % 2 == 0) {

                return (ret[retLen / 2] + ret[retLen / 2 + 1]) / 2d;

            } else {

                return ret[retLen / 2];

            }

    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

时代我西

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值