导读:在任正非看来,模型的应用有时比模型本身还有前途,华为会做AI的底层算力平台。
卖铲子的人这一次对自己“动手了”。
当地时间2月26日,在巴塞罗那举行的MWC展会上,华为董事、ICT产品与解决方案总裁杨超斌发布了通信行业首个大模型。这是盘古大模型3.0版本发布七个月后,该公司在大模型领域的又一重要动作。
值得注意的是,这是华为第一次在自己“老本行”通信领域,将AI大模型能力集中打包成单独的解决方案。杨超斌表示,“华为通信大模型将提供基于角色的Copilots和基于场景的Agents的两类应用能力,最终将全面提升网络生产力。”
网络生产力背后代表的是流量红利。举个例子,此前中国的运营商针对网络主播推出了上行保障套餐,在这样的套餐下,网络主播的直播体验得到保障,ARPU值提升超过70%。因此,随着5G-A时代的逐步临近,各类应用以及技术的迭代加速,用户对网络的稳定诉求也在提升,运营商的智能化运营迫在眉睫。
另一方面,“网络崩了”近两年频频发生。据不完全统计,2023年涉及网络崩溃的企业多达14个,覆盖腾讯、滴滴,阿里等互联网公司的多个子业务,而这一数字在2022年约为9起。如何用AI大模型的能力解决网络问题是当前通信行业共同面临的紧迫课题。
这些案例也被杨超斌视为华为通信大模型的典型案例。在大会现场的演讲中,他表示,大模型可以通过语言交互的方式,提供精准的网络状态、故障根因、处理建议等信息,协助降低故障处理时间至少30%。比如,在移动承载网络场景,基于网络数据和决策链推理,快速定位原因,平均故障处理时长从2.5小时降低到20分钟。
“又比如网络隐患管理,大模型可以综合识别业务质差、网络潜在故障风险等,然后编排合理的操作方案,调用工具解决风险问题,实现‘0’群障事故。”杨超斌说,进入5G-A时代,网络能力的跃升激发了多样化业务创新,但行业也提出了敏捷业务发放、精准用户体验保障、跨领域高效运维的高阶智能化目标,华为期待一场新的关键技术革命。
华为创始人任正非曾指出,未来在AI大模型方面会风起云涌,不只是微软一家。人工智能软件平台公司对人类社会的直接贡献可能不到2%,98%都是对工业社会、农业社会的促进。而从华为在大模型领域的布局来看,立项于2020年,并于2021年4月发布“盘古大模型”,摸索中,华为逐步确立在这领域的新定位。
从2023年发布的内容来看,盘古行业大模型3.0升级后,盘古将是其“大模型系列”的统称,既包括了语言大模型、视觉大模型在内的基础模型,也包括了具有行业属性的金融,制造,药物分子的行业模型以及场景开发类别的模型服务。此次通信大模型更像是华为对大模型垂直领域的进一步落地,但这一说法并未获得官方确认。
在任正非看来,模型的应用有时比模型本身还有前途,华为会做AI的底层算力平台,但应用平台不是华为的选项,“在2%的平台贡献里,我们占一点点就行。ChatGPT对我们的机会是什么?它会把计算撑大,把管道流量撑大,这样我们的产品就有市场需求。”
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。