基于大模型的视频监控系统,危险行为检测告警,市场巨大
源代码
https://www.gitpp.com/mogutu/projects06017089009
本开源MIT协议,开源协议友好,可以商业化
系统架构
AI增强架构将视觉大模型、多模态大模型和大语言模型无缝集成到现有的视频监控系统中,提供以下增强功能:
- 精确物体识别与跟踪
- 深度场景理解与上下文分析
- 智能告警分析与误报过滤
- 自然语言告警解释与建议
支持的大模型类型
系统支持以下类型的AI大模型集成:
1. 视觉大模型
用于物体检测和基础场景理解:
-
YOLO系列
:YOLOv8、YOLOv9等,用于快速准确的物体检测
-
SAM (Segment Anything Model)
:用于精确的物体分割
-
DINO
:用于零样本物体检测和跟踪
-
CLIP
:用于图像与文本概念的关联
2. 多模态大模型
用于深度场景理解和视觉-语言关联:
-
GPT-4V/GPT-4o
:OpenAI的视觉语言模型,通过API调用
-
Claude 3
:Anthropic的多模态模型,通过API调用
-
Qwen-VL
:通义千问视觉语言模型,支持本地部署
-
CogVLM
:认知视觉语言模型,支持本地部署
3. 大语言模型(LLM)
用于告警分析和决策支持:
-
GPT-4/GPT-3.5
:通过API调用
-
Claude 3
:通过API调用
-
Llama 3
:支持本地部署
-
Phi-3
:轻量级模型,支持本地部署
基于大模型的视频监控危险行为检测系统开源项目详解
项目概述
该开源项目通过将视觉大模型、多模态大模型和大语言模型无缝集成到现有视频监控系统中,构建了一个智能化的危险行为检测系统。其核心价值在于通过AI技术提升监控效率,减少人工干预,实现对危险行为的精准识别和快速响应。系统支持多种主流AI大模型的集成,包括YOLO系列、GPT-4V、Qwen-VL等,覆盖物体检测、场景理解、告警分析等多个环节。
系统架构
系统架构采用AI增强架构,主要功能模块包括:
-
精确物体识别与跟踪
通过YOLOv8、SAM等模型实现快速准确的物体检测和分割,支持零样本物体检测(如DINO)和图像-文本关联(如CLIP)。
-
深度场景理解与上下文分析
集成多模态大模型(如GPT-4V、Qwen-VL),实现场景的深度理解和跨模态关联,提升对复杂环境的分析能力。
-
智能告警分析与误报过滤
结合大语言模型(如GPT-4、Claude 3)对告警信息进行智能分析,过滤误报并生成自然语言解释。
-
自然语言告警解释与建议
将告警信息转化为人类可读的自然语言,并提供应对建议,提升系统交互性。
支持的大模型类型
系统支持以下三类AI大模型的集成:
-
视觉大模型
-
-
YOLO系列
:YOLOv8、YOLOv9用于实时物体检测。
-
SAM
:精确物体分割。
-
DINO
:零样本物体检测和跟踪。
-
CLIP
:图像与文本的关联。
-
-
多模态大模型
-
-
GPT-4V/GPT-4o
:通过API调用,实现视觉-语言关联。
-
Claude 3
:多模态理解能力。
-
Qwen-VL
:通义千问视觉语言模型,支持本地部署。
-
CogVLM
:认知视觉语言模型,支持本地部署。
-
-
大语言模型(LLM)
-
-
GPT-4/GPT-3.5
:通过API调用,提供告警分析和决策支持。
-
Claude 3
:多模态任务支持。
-
Llama 3
:支持本地部署的轻量级模型。
-
Phi-3
:轻量级模型,适合资源受限环境。
-
核心价值
-
高效性
通过AI技术实现实时监控和危险行为检测,大幅减少人工监控的工作量。
-
准确性
集成多种大模型,提升物体检测、场景理解和告警分析的精度,降低误报率。
-
灵活性
支持多种大模型的集成和本地部署,适应不同场景的需求。
-
可扩展性
系统架构设计开放,支持未来新模型的接入和功能扩展。
应用场景
-
公共安全监控
在机场、车站、商场等公共场所,实时检测危险行为(如持械、暴力冲突)并触发告警。
-
工业安全监控
在工厂、矿山等工业场景,检测违规操作(如未佩戴安全帽、进入危险区域)并预警。
-
交通管理
在道路监控中,检测危险驾驶行为(如闯红灯、逆行)并生成告警信息。
-
智能家居
在家庭监控中,检测异常行为(如老人跌倒、儿童危险动作)并通知用户。
-
监狱安全管理
在监狱等高安全场所,实时分析囚犯行为和情绪,预警暴力冲突。
项目开源地址
-
GitHub/Gitee链接
:
https://www.gitpp.com/mogutu/projects06017089009
项目代码完全开源,支持二次开发和定制化。
总结
该开源项目通过集成多种大模型,构建了一个高效、准确、灵活的视频监控危险行为检测系统。其核心价值在于通过AI技术提升监控效率,减少人工干预,适用于公共安全、工业安全、交通管理等多个场景。项目代码开源,支持定制化开发,具有广泛的应用前景。
传统视频监控,又傻又笨,毫无意义
大模型加持的视频监控平台,AI智能分析
基于大模型的视频监控危险行为检测系统
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。