大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:
1、LLM终于能"看懂"网页了!不再把表格读成一锅粥
2、LLM新突破:如何让AI更聪明地学习示例?MOICL给出答案
1、LLM终于能"看懂"网页了!不再把表格读成一锅粥
还记得AI助手有时会把网页内容理解得乱七八糟吗?尤其是遇到表格时,经常摸不着头脑。这个问题困扰着ChatGPT、Perplexity等众多AI产品,直到研究人员提出了一个绝妙的想法:为什么不让AI直接读取网页的原始代码(HTML)呢?
传统的做法是把网页转换成纯文本再喂给AI,就像把一本精美的杂志撕碎重组。研究人员发现,这样会丢失大量重要信息,比如表格结构、标题层级等。更妙的是,各大AI模型在训练时就接触过大量HTML文档,天生就懂这种语言,完全不需要额外训练!
但是,网页代码通常又臭又长,90%都是样式表、脚本等"废话"。研究团队开发了一套清理和精简方案,像个细心的园丁,把HTML文档修剪到原来的6%大小,同时保留所有关键信息。他们还设计了一个聪明的两阶段剪枝算法,就像给每段内容打分,只保留最相关的部分。
实验结果令人振奋:在6个问答数据集上,这种新方法都显著优于传统方案。这意味着未来的AI助手将能更准确地理解网页内容,不再把表格读成一锅粥,给出的答案也会更加准确。这项突破为AI技术开辟了一个全新的研究方向,让我们离真正的智能对话又近了一步。
论文标题:HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems
论文链接:https://arxiv.org/abs/2411.02959
2、LLM新突破:如何让AI更聪明地学习示例?MOICL给出答案
现代大语言模型(LLM)虽然功能强大,但在处理示例学习(In-context Learning)时仍面临着不小的挑战。比如,当我们给模型提供过多示例时,会导致内存占用过大;而且模型也无法分辨哪些示例更有价值,哪些可能是噪音。最近,研究人员提出了一个创新方案:混合示例学习器(Mixtures of In-Context Learners, MOICL),巧妙地解决了这些问题。
那么MOICL是如何工作的呢?它的核心思想是将示例分成多个小组,把每个小组视为一个"专家",然后训练一个权重函数来合并这些"专家"的输出结果。这就像请多位专家各自看一部分资料,再根据每位专家的专业度来综合他们的意见,既减轻了每位专家的负担,又能得到更准确的结果。
实验结果令人振奋:在7个分类数据集中,MOICL在5个数据集上的表现都优于现有方法,最高提升达到13%。更令人惊喜的是,它在处理有偏差的数据时表现格外出色——面对数据不平衡时,准确率最高提升49%;处理带噪音的示例时,准确率最高提升38%。
最重要的是,MOICL不需要修改语言模型内部参数,这意味着它可以作为一个即插即用的解决方案,适用于各种商用LLM。同时,它还大大降低了内存消耗,提高了计算效率。这些优势使MOICL在实际应用中具有很高的价值,为AI系统的进一步发展开辟了新的方向。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。