前言,智算中心核心任务是承载AI大模型的训练及推理等,进而为各行各业提供便捷、高效、领先和普惠的多元化“算力服务”,大模型作为智算时代的核心“产物”被大家广泛关注,从技术迭代和应用角度可细分为三个类型分别为基础大模型、行业大模型以及场景大模型(垂类大模型)。三者之间的区别和联系是什么?非专业领域朋友如何快速记住它们特点呢?今天我们简单聊聊!
一、智算中心从集群建设到应用落地大致流程
现阶段智算中心我们关注最多的就是产品供应和方案设计(因为GPU缺卡、方案规模大),这仅是智算中心业务的开端,整个流程还需要经过集群建设(含调优)->数据准备->模型训练(含微调)->推理压缩->应用落地等五个核心阶段,每一个阶段都是一项复杂且系统的工程,简单介绍这个是给后面内容做个铺垫。
二、3类不同类型大模型的特点分析
通用、行业以及场景大模型是人工智能领域中的三种不同类型的大型模型,它们在设计理念、应用范围、训练数据和功能特点等方面各有侧重;
1、通用大模型:是指具有广泛适用性的预训练模型,它们在大规模数据集上进行预训练,能够捕捉到语言的普遍特征和知识,通常使用互联网上海量的文本数据,包括书籍、文章、网页等,涵盖多种主题和领域,它是行业大模型和场景大模型的基础。
2、行业大模型:是针对特定行业或领域(如医疗、金融、法律等)定制的模型,它们在通用大模型的基础上,使用行业相关的数据进行进一步的训练和优化。除了通用数据外,还会包含大量的行业专业文献、报告、案例等,其专注于特定行业,能够理解和生成行业特有的专业知识和术语,相比通用大模型更加专业化和精准。
3、场景大模型:是针对特定应用场景(如客服对话、问答系统等)设计的模型,它们在通用大模型或行业大模型的基础上,针对具体场景进行优化。包含特定场景下的交互数据、用户反馈等,往往涉及客户的内部数据,对数据的安全性要求高。
4、三类大模型对“训练数据”的类型、体量、安全性要求等都有差异;
三、怎么“形象”且直观的理解3类大模型呢?
经过和很多客户交流,我认为不同模型特点和大学生培养非常类似;
1、通用大模型好比高中毕业,大家接受到的教育和教材都是通用、公开和类似的,高中毕业后具备的是基本的技能,可以满足日常生活和基础类工作的需要,但对于特定专业领域的工作是无法胜任的;
2、行业大模型好比大学毕业,高中生考上大学后,可根据个人发展,选择不同的专业学习方向,这个阶段的学习内容根据专业不同选修不同的学科,教材也有差异化,修完固定学分在大学毕业前往往还需要进行校内或者校外的实习,检查学习的技能能否更好的胜任工作的需要,在实践中不断发现自身不足并进行持续改进,逻辑就和模型的微调类似(发现不足持续优化);
3、场景大模型好比岗位培训,用人单位根据毕业生所学专业选择应届毕业生,普遍共识是应届生距离真正独立工作还需要经过系统性的培养,这时公司(正规的大公司或者用人单位)通常会安排导师经过3-6个的一对一带教才能入门,所学的内容通常是公司或单位的内部数据,对安全性要求高。和场景大模型的逻辑很类似,而且还需要在工作过程中持续学习。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。