企业级RAG系统建设路线图:万字报告解析RAG落地最佳实践

自2022年底OpenAI发布ChatGPT以来,大模型受到市场广泛关注,各行各业积极探索大模型的应用。但从企业实践来看,将大模型无缝集成到企业工作流中存在较多挑战,包括大模型的幻觉、开发和维护大模型的高成本以及由于大模型知识库的局限性而导致的准确率不满足业务需求。

RAG(Retrieval-Augmented Generation,检索增强生成)是一种人工智能框架,旨在利用大语言模型(LLM)进行跨外部知识源的自然语言查询。RAG的核心思想是通过外挂知识库的方式给大模型提供更可靠的知识来抑制模型产生幻觉,通过定期迭代知识库的方式解决大模型知识更新慢和训练成本高的问题。

在实践RAG的过程中,企业会发现RAG走通很容易,但实际落地生产的难度非常大。基于对企业RAG落地实践的调研与研究,沙丘智库发布《2024年“大模型+RAG”最佳实践报告》,为企业提供一份全面的RAG应用指南,以及18个典型案例作为参考。

01

“大模型+RAG”应用指南

为了使RAG能够应用于更加复杂、更具价值的场景,企业需要创建一个完整的RAG系统链路,以便能够通过工程化的技术手段对链路上的不同部分进行实验和优化。RAG链路可分为三个部分:数据准备、知识检索和答案生成。

在数据准备环节,RAG的典型问题包括数据质量差、多模态信息、复杂的PDF提取等;在知识检索环节,RAG的典型问题包括内容缺失、错过排名靠前的文档、不在上下文中等;在答案生成阶段,RAG的典型问题包括未提取、不完整、格式错误、模型幻觉等。

基于对多家企业RAG落地实践的调研与研究,沙丘智库总结了如下六点RAG优化建议:

第一,构建完整的数据准备流程;

第二,采用多种分块方式;

第三,通过查询转换澄清用户意图;

第四,采用混合检索和重排策略;

第五,改进提示词模板;

第六,实施动态防护栏。

02

“大模型+RAG”典型案例

在《2024年“大模型+RAG”最佳实践报告》中,沙丘智库精选了18家企业的RAG技术实践,例如:

在数据准备环节,阿里云考虑到文档具有多层标题属性且不同标题之间存在关联性,提出多粒度知识提取方案,按照不同标题级别对文档进行拆分,然后基于Qwen14b模型和RefGPT训练了一个面向知识提取任务的专属模型,对各个粒度的chunk进行知识提取和组合,并通过去重和降噪的过程保证知识不丢失、不冗余。最终将文档知识提取成多个事实型对话,提升检索效果;

在知识检索环节,哈啰出行采用多路召回的方式,主要是向量召回和搜索召回。其中,向量召回使用了两类,一类是大模型的向量、另一类是传统深度模型向量;搜索召回也是多链路的,包括关键词、ngram等。通过多路召回的方式,可以达到较高的召回查全率。

在答案生成环节,中国移动为了解决事实性不足或逻辑缺失,采用FoRAG两阶段生成策略,首先生成大纲,然后基于大纲扩展生成最终答案。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户想用DeepSeek给企业搭建一个知识库和问答平台,需要做哪些准备呢?首先,我得理清楚整个流程,可能用户对这方面的步骤不太熟悉,所以需要详细但不过于技术化的解释。 首先,用户可能需要明确需求。比如,企业的具体业务场景是什么?是内部使用还是对外服务?内部的话,可能涉及不同部门的文档管理,对外的话可能需要客服或客户支持。目标用户是谁?员工、客户还是合作伙伴?这些都会影响后续的设计和功能。 然后,知识库的内容准备。可能需要收集现有的文档、资料,整理成结构化的格式。这里需要考虑文档的类型,比如PDF、Word、Excel、PPT,甚至图片和视频。另外,数据是否需要清洗,比如去除重复、过时的内容,或者进行敏感信息脱敏处理,比如客户隐私数据。 接下来是技术选型。DeepSeek可能提供了一些API或者工具,但用户可能需要结合其他技术栈。比如,是否需要使用向量数据库来存储和处理非结构化数据?Milvus、Pinecone或者Faiss这些选项各有什么优缺点。后端框架选什么?Flask、Django还是FastAPI?前端用Vue、React还是其他?这些都需要根据团队的技术背景和项目需求来决定。 然后考虑系统架构设计。知识库的存储部分,如何分门别类,是否需要版本控制?问答系统的话,可能需要用到自然语言处理模型,比如微调DeepSeek的模型,或者结合RAG(检索增强生成)技术。如何保证回答的准确性和实时性?可能还需要考虑缓存机制,比如Redis来缓存常见问题,提高响应速度。 权限和安全性也是重点。企业数据通常敏感,所以需要严格的权限管理,比如RBAC(基于角色的访问控制),确保不同角色的员工只能访问相应内容。数据传输和存储的加密,SSL/TLS加密传输,数据库加密存储。审计日志功能,记录用户的访问和操作,便于追溯。 然后是测试和优化。需要制定测试用例,覆盖各种查询场景,包括边缘情况。收集用户反馈,持续优化模型和检索逻辑。可能还需要监控系统性能,比如响应时间、准确率,使用Prometheus和Grafana进行监控和可视化。 部署和维护方面,选择云服务还是本地部署?AWS、阿里云还是腾讯云?考虑成本、扩展性和合规性。定期更新知识库内容,建立维护流程,比如内容审核机制,确保信息的及时更新和准确性。 最后是用户体验和培训。设计直观的界面,方便用户搜索和浏览。可能还需要培训员工如何使用系统,特别是管理员如何更新和维护知识库。收集用户反馈,持续改进系统。 可能用户没有提到的点包括法律合规,比如数据隐私法规(GDPR、中国的个人信息保护法),需要确保系统符合相关法律。另外,多语言支持如果企业有国际业务的话。还有系统的扩展性,未来业务增长时能否方便地扩展。 总之,需要从需求分析、数据准备、技术选型、系统设计、安全权限、测试优化、部署维护、用户体验等多个方面综合考虑,分步骤实施,确保项目顺利落地。</think>为企业搭建知识库及问答平台需系统化准备,以下是分阶段实施步骤及关键要点: --- **一、需求调研阶段** 1. **明确业务场景** - 确定使用场景:内部知识管理(员工手册/技术文档)or 对外客服系统 - 典型用户画像:IT支持人员/销售团队/终端客户等 - 核心需求排序:如医疗行业优先准确性,电商侧重快速响应 2. **内容边界划定** - 知识类型:产品手册(PDF)、技术白皮书(Markdown)、培训视频(MP4) - 数据规模预估:初期建议控制5000文档以内(约100GB存储) --- **二、数据准备阶段** 1. **文档预处理流程** - 格式转换工具链:Apache Tika(文档解析)、FFmpeg(音视频处理) - 结构化示例: ```python # 使用PyPDF2提取文本 from PyPDF2 import PdfReader reader = PdfReader("manual.pdf") text = "\n".join([page.extract_text() for page in reader.pages]) ``` 2. **数据清洗规范** - 敏感信息处理:正则表达式过滤身份证/银行卡号 - 质量检测指标:设置完整性评分(段缺失率<5%) --- **三、技术架构设计** 1. **推荐技术栈组合** - 向量数据库:ChromaDB(轻量级)或Milvus(分布式场景) - 检索增强:DeepSeek-RAG-7B + 混合检索策略(关键词+语义) 2. **系统拓扑示例** ``` [用户界面] → [API网关] → [检索引擎] → [向量DB] ↘ [LLM推理] ← [微调模型] ``` --- **四、安全合规建设** 1. **权限管理方案** - 分级权限示例: ``` 管理员:增删改查+审计 部门主管:本部门文档管理 普通员工:只读权限 ``` 2. **合规性检查清单** - 等保2.0三级认证要求 - GDPR数据主体权利实现路径 --- **五、实施路线图建议** 1. **分阶段里程碑** - 第1月:完成10个核心产品文档的向量化存储 - 第3月:实现90%常见问题的准确回答 - 第6月:建立自动化的知识更新流水线 2. **关键成功指标** - 首答准确率 >85%(通过人工抽样评估) - 平均响应时间 <1.5秒(压力测试结果) --- **六、持续优化机制** 1. **反馈闭环设计** - 用户评分系统:每个回答附带「有帮助」按钮 - 主动学习流程:低置信度回答自动转人工审核 2. **版本更新策略** - 每周增量更新:自动同步Confluence等源数据 - 季度模型迭代:基于新数据微调embedding模型 建议从最小可行产品(MVP)起步,先实现核心部门的文档检索功能,再逐步扩展至全公司范围。注意预留API扩展能力,方便后续对接OA/CRM等业务系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值