被原型支配的恐惧
身为产品经理,大家大概率都有过这般经历:接到需求后,便开启漫长的手动画原型过程。眼睛紧盯着屏幕,手指在鼠标与键盘间来回切换,持续调整组件、修改布局。有的大型项目的原型一画就是好几天,好不容易完成了,却还要面临各种问题。
先谈谈重复劳动。比如每次设计消息、个人中心、电商 APP 的商品列表页,都得从基础组件开始一步步搭建,像商品图片、名称、价格、描述等元素,每个页面都要重复操作,耗时又耗力。明明很多功能和之前的原型类似,却总是没办法直接复用,只能一遍又一遍地 “重新造轮子”。
再讲讲审美问题。产品经理画原型,重点在于呈现产品逻辑和功能,然而很多领导并不这么认为。他们一看到原型,就开始抱怨界面不美观、布局不合理,甚至连示意的文案都有可能要求再三修改。虽然我心里清楚,原型只是个想法的载体,精美与否那是 UI 设计师的事儿。可没办法,还得耐着性子解释,再按照他们的要求修改…不耐烦和委屈已经要挂在脸上了。
就在我被原型折磨的间隙,偶尔发现了MasterGo 这款神器,救星来了!且不说它能支持多人同时编辑、随时在线评审、设计一键交付 ,界面设计专业又智能,还自带自动布局、素材填充等智能功能,就说它能用自然语言画原型的功能,终于可以解放产品经理的双手了!
自然语言画原型,真有这么神?
操作超简单
MasterGo 的自然语言画原型功能,操作简单到超乎想象。就像和一个懂设计的好朋友聊天一样,只要把你脑海中的想法用自然语言描述出来,它就能帮你生成原型。
比如,我最近接到的一个项目,将APP的第二主菜单内容调整为类似于小红书的内容频道。
打开 MasterGo的【AI生成界面】,在输入框中写了“底部tabbar分别为:首页、发现、+、消息、我的。 选中【发现】,页面呈现出类似小红书的笔记瀑布流。”,点击发送后,他会根据我的要求拆解我的需求内容并给出分析结果。
根据实际需要,我又修改了一些要求,大概1分钟的时间,一个高保真的原型页面就出现在我眼前。整个过程一气呵成,毫无拖沓之感。 不需要复杂的操作,也不需要花费大量时间去学习各种工具的使用方法,只要会打字、会描述需求,就能轻松上手。这对于那些被传统原型设计工具折磨得苦不堪言的产品经理来说,简直就是福音。
效果很惊艳
用 MasterGo 生成的原型,效果好到让人惊艳。就算刚出来的效果没有那么好,但只要你说,它就能改,指哪打哪特别方便。比如V2版本的宫格区距离顶部没有留边距,我提出修改:“调整每个模块之间的间距规范,关注那一排距离下面的宫格区域太远了。”它马上就改好了。
告别“垃圾活”
不少同行肯定听到老板说过这句话:“你去抄一下 xx 的页面就好了呀” 。
以前听到这话,心里真是一万个草泥马奔腾……抄?不也要画原型吗?不也得花费时间和精力吗?但现在有了 MasterGo,情况就完全不一样了。产品经理再也不用干这些 “垃圾活” 了!!
老板要是说抄哪个页面,截图上传然后告诉它,它第一版就能帮你还原个 90%!剩下的,再用自然语言做一下精修,调整一些细节,比如按钮的颜色、文字的大小、元素的间距等等,就能轻松搞定。这就好比有了一个超级助手,帮你把繁琐的基础工作都完成了,你只需要在它的基础上进行优化和完善,大大节省了时间和精力。
而且,用 MasterGo 抄页面,还不用担心会出现抄袭痕迹明显的问题。它生成的原型页面,虽然是参考了其他优秀的设计,但在细节和风格上,都会有一些独特的处理,让你的产品既具备优秀的设计理念,又有自己的特色。
使用小技巧
在描述需求时,要尽可能精准。比如,不要只说 “一个登录页面”,这样生成的原型可能比较基础。可以详细描述为 “一个有用户名输入框、密码输入框、登录按钮、忘记密码链接,且输入框有占位提示文字,登录按钮为蓝色圆角矩形的登录页面”,这样生成的原型就能更符合你的预期。
体验地址:
https://mastergo.com/
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。