❝
在开放领域问答(ODQA)中,检索增强生成(RAG)模型表现出色,但文档分块过程的重要性常被忽视。本文提出了一种新的框架:逻辑引导的多粒度分块器(LGMGC),用于将长文档分割成具有不同粒度的上下文化、自包含的分块。实验表明,LGMGC不仅提升了密集段落检索的效果,还在与RAG流程集成时优于现有分块方法。通过结合Logits引导分块和多粒度分块,LGMGC确保了语义连贯性和适应不同类型查询的能力,从而提高了端到端RAG系统的性能。
关键词: 段落分割, 开放领域问答(ODQA), 检索增强生成(RAG)
一、背景
1. 研究难点
-
分块的粒度和语义在检索阶段的重要性。
-
检索到的文档块中缺少上下文信息和过多无关信息会阻碍生成器提取准确的关键信息。
2. 相关工作
-
递归分块、Small2-Big、语义分块等方法。
-
利用大型语言模型(LLMs)进行文本分块的研究,如 LumberChunker 和 In-context 检索方法。
二、认识 LGMGC 框架
Logits-Guided Multi-Granular Chunker(LGMGC) 新框架,用于解决文档分块问题。
- 1. Logits-Guided Chunker: 首先,利用预训练的大型语言模型(LLMs)来确定文本中完整语义单元的边界。LLMs 能够建模给定序列条件下后续标记的概率分布,计算每个句子末尾出现
[EOS]
标记的概率,选择概率最高的点作为分界点。公式如下:
其中, 是描述性提示, 表示句子连接, 是句子。通过这种方法,Logits-Guided Chunker能够有效地将文档分割成语义完整且独立的单元,从而提高检索的准确性。
-
2. Multi-Granular Chunker: 其次,引入多粒度分块模块,通过递归地将文本分割成不同粒度的子块来工作。初始文档被分割成较大的父块,然后每个父块被递归地分割成更小的子块。具体来说,父块被分割成 P/2 和 P/4 词的子块,确保一个句子不会被分割到多个块中。在推理过程中,父块的相似度得分由其子块的最大得分决定,选择得分最高的前 k 个父块传递给 LLM 合成器生成响应。这种多粒度分块方法的优势在于它能够在检索和合成过程中提供不同粒度的文本片段,从而更好地适应不同类型的查询,提高整体性能。
-
3. Logits-Guided Multi-Granular Chunker: 最后,结合 Logits-Guided Chunker 和 Multi-Granular Chunker,利用 Logits-Guided Chunker 生成的父块进一步细分为子块。
三、实验设计
为了评估 LGMGC 的影响,进行了以下实验:
-
1. 数据集: 使用 GutenQA 和 LongBench 数据集进行评估。GutenQA 包含“干草堆中的针”类型的问题-答案对,LongBench 包含三个单文档问答任务(NarrativeQA、QasperQA 和 MultifieldQA)。
-
2. 评价指标: 对于检索性能,使用 DCG@k 和 Recall@k 指标;对于端到端的 RAG 性能,使用 F1-score 指标。
-
3. 基线方法: 评估了递归分块、语义分块、段落级分块、LumberChunker、多粒度分块和 Logits-Guided 分块等方法的性能。
-
4. 实现细节: 使用 BGE-Large 和 E5-Large 作为检索器,Llama3-8b-Instruct 和 Llama3-70b-Instruct 作为合成器。最终答案通过贪婪搜索生成,以最小化随机性。
四、实验结果分析
-
1. 文档检索:
在 GutenQA 数据集上,Logits-Guided Chunker 在各种块大小下均优于递归分块、语义分块和段落级分块,表明其在捕捉上下文连贯性和生成独立、集中的语义块方面的优越性。尽管 LumberChunker 在性能上略胜一筹,但 Logits-Guided Chunker 更为成本效益高且易于部署。多粒度分块也显示出显著的性能提升。最终,LGMGC 在所有块大小下均表现最佳,且在不同块大小下的标准差最小,表明其在实际应用中具有更高的鲁棒性和效率。
-
2. 开放域问答: 在 LongBench 数据集上,LGMGC 在使用最佳块大小时在所有三个数据集上均表现出最高的性能,表明其在下游问答任务中优于现有基线方法。
五、总结
本文提出了一种名为 Logits-Guided Multi-Granular Chunker 的新分块框架,包含两个主要组件:Logits-Guided Chunker 和 多粒度分块模块。实验结果表明,LGMGC 在检索和下游问答任务中均表现出色,具有广泛的应用潜力和实际应用效率。未来的研究可以进一步探索与人类评估更一致的自动评估指标,以更全面地理解分块策略的重要性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。