模型内隐式推理范式演进:推理模型在训练时与推理时如何突破“显式CoT”瓶颈?

背景:为什么需要“隐性推理”?

传统语言模型(如ChatGPT)依赖显式规则或长文本提示(如Chain-of-Thought),但存在两大痛点:

  1. 效率低:多步推理需生成大量中间文本,如同写作文前先列大纲,耗时长、资源多;
  2. 泛化弱:过度依赖人工设计的提示模板,遇到复杂场景容易“卡壳”。

破局之道:让模型直接在“隐状态”(Latent State)中进行推理,像人类大脑的潜意识一样,压缩高阶语义概念,快速迭代求解。

Coconut:连续思维链——隐式推理的初步探索

一句话核心:让模型“用向量思考,而非文字”。

传统方式:隐藏状态 → 语言Token → 下一Token预测(如同翻译思维过程为文字)。

问题&思考:显性的符号化语言与隐性思维或推理之间有着什么样内涵上的联系与本质上的差别?系统2的CoT分步推理与系统1分别在模型训练时与推理时的正/反向传播链路、模型神经网络内部的潜状态空间转移机制及信号激活传导链路对应的模型训练过程中所“压缩”的数据联合分布映射出的泛化问题,我们如何以统一的视角去审视?下面这篇论文也许会为大家带来一些提示。

1、Coconut的创新

1.1 端到端可微优化

来自Meta田渊栋团队、加州大学圣地亚哥分校的研究者们提出了一种新的范式—连续思维链·Coconut,来探索 LLM 在潜在空间中的推理。具体的技术路线涉及对传统 CoT 过程的简单修改:Coconut不再通过语言模型头(language model head)和嵌入层将隐藏状态与语言 token 进行映射,而是直接将最后的隐藏状态(即连续思维)作为下一个 token 的输入嵌入这种修改尝试在模型隐层中将传统以语言空间形式化嵌入为基础的推理过程转化为隐性连续思维表征。由于连续思维完全可微,因此可以通过梯度下降对系统进行端到端优化。另外为了增强潜在推理的训练,采用了多阶段训练策略,该策略亦有效地利用语言推理链来指导训练过程。

img

1.2 BFS式探索与动态纠错

另外,Coconut可进一步带来高效且可延展的连续推理探索可能,与传统的基于语言的推理不同,Coconut中的连续思维可以同时编码多个潜在下一步,从而实现类似于广度优先搜索(BFS)的探索过程,这一过程由隐含的价值函数引导,模型可以在更广阔的探索空间中以图或树型路径进行充分探索,并通过对探索过的错误路径的反馈学习,精细化或压缩指引模型参数化知识,从而在复杂规划任务实验中超越传统CoT。

img

2、未来展望与挑战

可以想象的是,通过在模型隐参数层这种类似于BFS的探索与反思过滤,一方面可以在更广阔的探索空间中以图或树型路径进行充分探索,以扩展潜在的可泛化空间边界,同时模型通过对探索过的错误路径的反馈学习,某种程度上对模型参数化知识实现了精细化“增强”或形式化的“压缩指引”(大家如对此处有困惑,可参考之前我的几篇关于模型显性与隐性参数化推理的相关观点blog),从而在接下来的复杂规划任务实验中超越了传统的CoT,即使模型并没有显式地接受训练或指示以这种方式操作。

当然如原论文中所述,对于未来在模型推理侧的两种模式切换策略可能存在的潜在挑战:

  • 在潜在思维上训练二元分类器,模型自主决定何时终止潜在推理
  • 始终将潜在思维填充到恒定长度

三 CoCoMix:高阶概念混合——语义压缩与弱监督进化

继上一章Coconut连续思维链之后,来自Meta田渊栋团队再次提出另一模型内隐状态推理模式 - 连续概念混合·CoCoMix,这篇论文不仅基于上一篇Coconut在tokenization中去实现连续隐状态推理,更是尝试在高阶概念语义层面上通过构建稀疏预测训练任务去捕捉、压缩高层次的语义概念结构。其核心思想是通过**“连续概念混合”来增强语言模型的推理能力,这不仅是对现有模型训练范式的优化,更是尝试对语言结构内部所蕴含的概念级推理机制**的深入探索。

img

接下来为大家简单拆解一下其技术细节,并结合隐式思维链的趋势,通俗的聊聊它的意义和未来可能的方向。

1、CoCoMix的创新点①:用稀疏性提取概念,用归因性筛选关键信息

CoCoMix的创新点之一是尝试用稀疏自编码器(SAE)从预训练语言模型的隐藏状态中提取高阶语义概念。稀疏性约束作为这里的精髓——通过TopK激活函数,只保留对当前任务最有用的概念,把噪声和无关信息剔除掉。这种新颖的设计避免了语言模型常见的一个问题:过于密集的表示往往会引入大量冗余信息,反而让模型在推理时迷失方向。

但提取概念只是第一步,接下来其用attribution score来筛选这些概念中对任务最有影响的部分。这种归因分数的计算方式也非常有意思——通过损失梯度和概念激活值的乘积,直接量化了每个概念对模型输出的贡献。作为这一创新的点睛之笔,其让模型的训练过程变得自然且高效,使得模型以任务目标为导向的关注那些真正重要的信息,而不是盲目地处理所有概念。

即 这种稀疏性和归因性的结合,实际上是在语言模型中引入了一种“信息过滤机制”。它不再像传统模型那样试图捕捉所有可能的语义信息,而是有选择地聚焦于那些对任务最有帮助的部分。这种设计不仅提升了模型的推理能力,还让它在弱监督学习场景中表现得尤为出色——比如用小模型提取的概念去指导大模型的训练。另一种反向的隐式的teacher-student蒸馏形式?:)

img

2、CoCoMix的创新点②:从显式规则到隐式推理,CoCoMix的隐式思维链

另外,在继上篇论文所提出的Coconut基础上,CoCoMix的连续概念混合(Continuous Concept Mixing)本质上也是在构建一种隐式的思维链。对比传统的思维链方法通过多步推理提示(Chain-of-Thought Prompting)显式地引导模型逐步推理,CoCoMix则把这种推理过程内嵌到了模型的训练中,同时找到了更高级语义概念的嵌入方法(虽然我总感觉这种概念嵌入方法看起来不那么的优雅,但从实验结果上确实是一种成功)。

它通过预测概念并将其压缩为连续向量,然后嵌入到隐藏状态中,与语言模型的上下文表示结合。这种方式也非常自然的在没有依赖外部的提示或结构化输入下从而让模型自己学会如何利用这些概念进行推理。我想正如论文中所示,未来在更广泛的数据样本和模型尺寸下通过这种隐式推理机制的泛化学习,也许可以做到使得模型的推理过程更加流畅,并显著提升其样本效率和泛化能力。

实验结果也验证了这一点。比如,在1.38B参数的模型上,CoCoMix在OpenWebText验证集上的困惑度与标准的下一个token预测(NTP)相当,但仅使用了78.5%的训练token。这种效率的提升,意味着模型在更少的数据上就能学到更多的东西,这对大规模语言模型的训练来说是一个巨大的优势。

img

3、另一个小创新点③:弱到强的监督,小模型也能教大模型

CoCoMix的另一个小创新是它在弱到强的监督场景中的表现。论文中提到,用一个124M参数的小模型提取的概念,可以指导一个1.38B参数的大模型进行训练。这种“弱到强”的监督机制我觉得也非常有趣,其颠覆了传统模型知识蒸馏的逻辑——以往我们总是用大模型教小模型,而现在,小模型也能反过来帮助大模型。

这种设计的意义在于,它让我们不再依赖大规模标注数据或复杂的蒸馏策略,而是通过小模型先验下的概念提取和传递的方式,实现更高效的模型训练的阶段性组合。尤其是在资源有限的情况下,这种弱到强的监督机制可能会成为一种非常重要的技术路线。

4、复杂推理的展望:从显式到隐式推理的范式转变

最后收敛性的谈谈我一直非常关注的隐式推理范式,从更大的视角来看,CoCoMix代表了一种从显式形式化到隐式参数化推理的范式转变。传统的语言模型更多依赖于显式的规则和形式化结构输入,而CoCoMix则通过在模型内部采取连续概念的混合,让模型自己学会如何进行高级概念的推理。这种隐式思维链的设计,不仅提升了模型的推理能力,还让它的推理过程更加自然和高效。

但我觉得,论文中这种隐式思维链的发展可能还将面临一些挑战。比如:

如何设计更高效的概念提取和筛选方法?

小模型与大模型之间在更大数据样本和大尺寸模型参数下可能涉及的多阶段、复杂过程性的概念连续嵌入如何规划?

如何让模型的推理过程更加透明和可控?

此外,我觉得未来的研究还可以探索隐式思维链与其他技术(如multi task、multi-modal,RL等)的结合,从而实现更自然、可扩展的强大高级推理能力。

5、Coconut&CoCoMix的意义与未来

Coconut与CoCoMix的提出,不仅是对语言模型训练范式的一次优化,更是对模型内部概念级语义分布结合推理泛化机制的一次重新定义与探索。其核心贡献在于,通过稀疏自编码器和连续概念混合,将高阶语义概念细粒度的token预测结合起来,从而实现了更高效的模型训练和推理。

从更大的视角来看,Coconut也好,CoCoMix也罢,让我们看到了一种新的技术路线:通过隐式思维链的设计,让模型自己学会如何推理,而不是依赖外部的显式形式化规则或提示。这种范式转变,可能会成为未来语言模型发展的一个重要方向,并希望未来能看到更多像Coconut&CoCoMix这样有创造力的工作,持续推动语言模型从“语言生成”迈向“智能推理”。

潜在循环推理架构——深度计算与动态扩展

后DS-R1下,显性推理·Existent‌ Reasoning → 隐性推理·Latent Reasoning的演进

无独有偶,不久前,来自马里兰大学的一篇论文中亦提出了另一种通过模型隐状态空间中通过迭代循环块来完成深度推理(泛化组合的持续封装与映射)工作的语言模型,也许为后DeepSeek R1时代下的显性推理·existent‌ reasoning范式通过生成更多token进行test-time扩展打开了推理的另一扇门,即 latent reasoning。

img

这篇论文《Scaling up Test-Time Compute with Latent Reasoning:A Recurrent Depth Approach》提出了一种新型的语言模型架构,通过在潜在空间中隐式推理来扩展测试时的计算能力。该模型通过迭代一个循环块(recurrent block),在测试时可以展开到任意深度,从而在不增加模型参数的情况下提升推理能力。以下对论文的核心观点进行简单解析:

1、研究背景与动机

  • 传统方法的局限性:以往的语言模型主要通过增加模型参数数量或扩展上下文窗口来提升推理能力。然而,这些方法需要大量的数据和计算资源,并且在推理时需要将**复杂的内部推理映射到单个输出词元(token)**上,效率较低
  • 潜在空间推理的优势:随着test-time观点的提出,在众多reasoning model的实践中人们发现模型可以通过在潜在空间中进行“思考”来提升推理能力,而不是依赖于显式的文字推理(如CoT)。
    img

从上述两个方面的出发点来看,不禁让我以及相信使得更多的研究者包括本篇论文的研究者关注到是否可以在不需要专门的训练数据,利用小上下文窗口实现即将显性CoT对模型的提示转移到模型内隐状态计算中来,以实现对test-time甚至training-time的优化,同时这种方法也许能够捕捉那些难以用文字表达的推理类型(如更抽象的空间思维或某种物理直觉),就像在大脑中仅凭对神经元的多次电信号激活与传导以实现对信息模式的的抽象并映射到某片神经元蔟的过程。

2、为实现上述模型隐空间的推理,研究者在模型架构上的创新

循环深度架构:该模型基于核心的循环深度块(recurrent depth block),即提出潜在循环深度的Transformer架构,模型主体结构基于仅解码器(decoder-only)的Transformer模块,在训练时随机采样迭代次数,在测试时可以根据需要扩展到任意深度,模型分为三个部分:

img

1.Prelude(序曲):将输入嵌入到潜在空间。

2.Recurrent Block(循环块):核心计算单元,通过迭代更新隐藏状态。

3.Coda(尾声):将潜在空间的输出解码为最终的预测结果。

在每个组中,模型大致都遵循标准的 Transformer 层设计,每个块包含多个层,每个层包含一个标准的因果自注意力块,使用 RoPE,基数为 50000,以及一个门控 SiLU MLP。作者使用 RMNSorm 作为规范化函数。为了稳定递归,模型按“三明治”格式对所有层进行排序。

img

在具体的训练方法上,为了使模型能够在test-time扩展推理深度,训练时随机采样迭代次数,并采用**截断反向传播(truncated backpropagation)**以降低内存和计算成本。

此外,研究者深入研究并展示了循环深度模型在test-time下自然支持许多功能,这些功能在非循环模型中需要大量的调整和研究工作,例如每个 token 的自适应计算,(自)推测解码和 KV 缓存共享。通过跟踪潜在空间中的 token 轨迹来表明,许多有趣的计算行为会随着规模的扩大而出现,例如模型在潜在空间中旋转形状以进行数值计算。

3、显性推理·existent‌ reasoning →隐性推理·latent reasoning的优势与价值意义

Transformer模型通过循环层可以在next token predict之前进行多次隐式计算,这种机制为以test-time为主导前向推理计算扩展提供了一种高效解决方案(当然在training-time过程中,也许也存在着同样的scaling law,但在训练过程中对性能及其它复杂训练范式仍需进一步探索和开发),与传统长上下文推理方法相比(如 OpenAI 的 o1,DeepSeek R1),潜在循环思考具有以下优势:

1. CoT训练数据的准备:这种潜在推理模型理论上可以在标准数据上训练,无需特定领域的长示例,且可根据计算预算灵活调整,通过额外计算资源增强推理能力。

2. 内存需求方面:相较于需要极长上下文窗口的链式思维推理模型,潜在推理模型在训练和推理时占用更少内存,无需采用专门的训练方法(如token并行化),即无需进行对长链tokenize的嵌入层计算准备。

3. 计算效率方面:循环深度网络这种对潜空间的计算将使得每参数执行的浮点运算(FLOPs)更多,大幅降低了大规模训练时的通信成本,尤其在低速网络条件下能显著提升设备利用率。

4. 促进“思考”而非记忆:通过构建计算密集但参数规模较小的架构,该方法强化了模型内潜空间层的**“元思考或抽象思维”能力,也许也能侧面印证我之前对碎片化泛化能力到拼接封装这一认知过程的猜想,而非仅单纯的依赖记忆式推理**。同时,类似循环先验在复杂算法学习中的优势已在相关研究中得到验证,这让我进一步联想到了不久前读过的一篇论文所提出的**“coconut latent space”嵌入计算以及谷歌DeepMind之前所提出的那篇“苏格拉底式自递归增强学习”**论文。

img

从更深层次的哲学视角来看,潜在循环推理也许能够捕捉人类推理中难以言表的部分,如形式化空间思维、物理直觉或运动规划。通过循环过程的多次迭代,模型可以在高维向量空间中进行深度探索,实现非线性思维,从而催生出能够展现新颖且复杂推理行为的系统。

img

4、实验与结果

  • 模型规模与训练:作者训练了一个35亿参数的模型,并在8000亿个token上进行了预训练。该模型在推理时可以通过增加计算量来提升性能,最高可达到相当于500亿参数模型的计算负载。
  • 性能提升:在多个推理基准测试中,该模型表现出显著的性能提升,尤其是在需要复杂推理的任务上。例如,在GSM8K(数学应用题)和ARC挑战(科学推理)等任务上,模型性能随着测试时计算量的增加而显著提高。
  • 与其他模型的比较:尽管该模型的参数较少,但由于其独特的推理方式,其性能与一些更大参数量的开源模型相当,甚至在某些任务上超越了它们。

img

5、未来方向

  • 进一步优化:研究者指出,未来的研究可以进一步优化模型的训练过程,例如调整学习率计划、改进数据混合策略等。
  • 结合其他架构改进:该模型可以与其他流形架构改进(如线性注意力、混合专家模型)结合,进一步提升模型的性能和效率。我想这里未来甚至可以针对静态的transformer架构进行更大幅度或更大胆的尝试与调整,如实现某种递归式动态latent注意力机制的创新。
  • 后训练方案:探索后训练方案,如强化学习或内部化推理,以进一步增强模型的推理能力。

最后,论文提出的这种通过循环深度架构在潜在空间中进行推理的语言模型,展示了其在推理任务上的潜力与意义。尽管该模型在规模和训练数据上相对较小,但其性能表现令人鼓舞,为未来语言模型的设计提供了一种新的思路。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值