目前,大多数大模型的训练过程通常被划分为三个关键阶段:预训练、后训练和微调。这种分阶段的训练策略,就如同精心设计的旅程,旨在逐步引导模型从原始状态走向能够精准执行特定任务的智能状态。接下来,我们将深入探讨这三个阶段,剖析其背后的原理和意义。
预训练阶段:构建通用知识基础
预训练是大模型训练的起点,这一阶段的目标是构建模型的通用知识基础。通过使用海量的无监督数据,如互联网上的文本、书籍、论文等,模型开始学习语言的内在规律和模式,包括语法、语义、上下文关联等。想象一下,这就好比是给一个婴儿提供大量的语言环境,让他在不断听和模仿中逐渐学会说话。
预训练通常采用自监督学习的方式,例如自回归语言模型(如 GPT 系列),通过预测下一个词或下一个词的概率分布来训练模型,让模型学会如何根据上下文生成连贯、合理的文本序列。另一个常见的方法是掩码语言模型(如 BERT 系列),它随机掩盖输入文本中的一些词汇,然后让模型预测被掩盖的词汇,从而帮助模型理解上下文信息和词汇之间的语义关系。
预训练阶段不需要针对特定任务进行标注,大大降低了数据准备的成本。而且,预训练好的模型可以作为通用的基础模型,适用于多种自然语言处理任务,如文本生成、语言理解、文本分类等,为后续的训练阶段打下坚实的基础。
后训练阶段:强化领域特定知识
后训练阶段紧跟预训练之后,其主要目标是强化模型在特定领域的知识和应用能力。尽管预训练已经让模型掌握了通用的语言规律,但在面对特定领域的任务时,模型可能仍然缺乏足够的专业性。后训练通过利用特定领域的有监督或无监督数据对模型进行进一步的训练,使模型能够更好地适应特定领域的语言特点、知识结构和任务需求。
例如,在医疗领域,后训练可以使用大量的医学文献、病历、研究报告等数据,让模型学习到医学术语、诊断过程、治疗方案等专业知识。在法律领域,模型可以通过后训练学习法律条文、案例分析、法律术语等,从而更准确地理解和处理法律相关的文本信息。
后训练阶段的常用方法包括领域适配和任务驱动的训练。领域适配是通过在特定领域的文本数据上继续训练,让模型熟悉该领域的语言风格和专业术语。任务驱动的训练则是根据具体任务的需求,设计相应的训练目标和任务,如文本分类任务中的分类标签预测、阅读理解任务中的答案生成等,使模型能够更好地完成特定任务。
后训练阶段不仅提升了模型在特定领域的性能,还增强了模型的适应性和灵活性,使其能够更好地满足实际应用场景中的多样化需求。
微调阶段:精准适配具体任务
微调阶段是大模型训练的最后阶段,其核心是针对具体任务进行精细化调整和优化。在这个阶段,使用少量标注的训练数据对已经过预训练和后训练的模型进行微调,使模型能够完全适配特定任务的特点和要求,达到最佳的性能表现。
微调阶段的常用方法包括全参数微调和部分参数微调。全参数微调是对整个预训练模型的所有参数进行调整,让模型能够根据具体任务的数据和目标进行整体优化。这种方法可以充分利用模型的原始参数结构,使其更好地适应任务,但需要较多的计算资源和数据。部分参数微调则只对模型的某些部分或层进行调整,如只调整模型的顶层或某些特定的中间层。这种方式可以减少计算资源的消耗,同时保持模型的大部分结构和参数不变,适用于数据量较小或计算资源有限的情况。
微调阶段就像是给一把已经打磨得很锋利的宝剑进行最后的开刃,使它能够精准地切割特定的物体。通过微调,模型能够针对具体任务进行高度定制化的优化,从而在特定任务上实现更高的准确性和效率。
为何要分三个阶段?
资源高效利用
大模型训练需要大量的计算资源和数据支持。如果将所有训练任务集中在单一阶段完成,不仅会耗费巨大的计算资源,还可能导致训练过程的复杂性和不稳定性增加。通过分阶段训练,可以合理分配资源,逐步提升模型的能力,避免资源的浪费和不必要的重复训练。
预训练阶段利用大规模无监督数据,为模型构建通用知识基础;后训练阶段在特定领域数据上进一步优化,增强领域适应性;微调阶段则针对具体任务进行精细化调整。这种分阶段的方式使每个阶段都能充分利用相应的资源,提高训练效率,降低训练成本。
逐步提升模型性能
分阶段训练有助于逐步提升模型的性能。预训练阶段让模型学会基本的语言规律和通用知识;后训练阶段使模型在特定领域内具备更强的专业性和适应性;微调阶段则进一步针对具体任务进行优化,使模型能够在特定任务上达到最佳效果。
这种逐步提升的方式类似于人类的学习过程。我们首先学习基础知识,然后在特定领域深入学习,最后通过实践和训练不断提升自己的专业技能。大模型的分阶段训练正是借鉴了这种逐步学习的模式,使模型能够从通用知识到领域特定知识,再到具体任务的精准适配,逐步提升其性能和能力。
模型适应性与灵活性
不同的任务和应用场景对模型的要求各不相同。通过分阶段训练,可以使模型在不同阶段具备不同的适应性和灵活性。预训练模型具有广泛的通用性,能够适用于多种任务;后训练模型在特定领域内表现更加出色;微调模型则针对具体任务进行了优化,能够满足特定需求。
这种分阶段的训练策略使得模型能够更好地适应各种不同的任务和场景,提高模型的实用性和广泛应用性。在实际应用中,我们可以根据具体需求选择合适的模型阶段,或者对预训练或后训练模型进行微调,以满足特定任务的要求。
结语
大模型训练的三个阶段——预训练、后训练和微调,是构建高效、智能且适应性强的模型的关键步骤。预训练为模型奠定了通用知识基础;后训练强化了模型在特定领域的专业能力;微调则使模型能够精准适配具体任务。这种分阶段的训练策略不仅提高了资源利用效率,还逐步提升了模型性能,增强了模型的适应性和灵活性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。