AI Safety Benchmark
AI Safety Benchmark是由中国信息通信研究院(简称“信通院”)组织发起的大模型安全评测榜单。
从2024年Q1开始,坚持每个季度发布一次,迄今已经发布四次。
评测采取的是邀请制,匿名发表测评结果,且每次评估侧重点会结合业界动态更新。
2024年Q1测试以模型的内容安全为核心测评目标,涵盖了内容安全、数据安全和科技伦理等三大测试维度,并进一步细分了20余个细粒度的测评类别。
2024年Q2测试以模型安全为核心测评目标,应用多种攻击手段对大模型开展对抗性测试。
2024年Q3测试以图文多模态内容安全为核心测评目标,从两个测试维度对多模态大模型输出进行安全测试。
2024年Q4测试以图文多模态大模型安全为核心测评目标,开展对抗性测试,探究模型抵御各种攻击方法的能力。
由于信通院的官方属性,AI Safety Benchmark可以说是最权威的大模型安全榜单了。
但由于是匿名发布,无法直接知道具体模型的安全性。
但依然可以从整体情况中一窥主流大模型当前的安全水平,同时也给业界提供了重要的安全测评体系的参考。
OpenCompass Flames
OpenCompass Flames是由上海人工智能实验室联合复旦大学一起发起的针对大模型内生安全的评估,评估维度涵盖公平性、合法性、安全性、道德性、数据保护五个方面。
相比信通院的AI Safety Benchmark,Flames榜单学术氛围更浓。
他们团队特地为此发了一篇paper,详细介绍整个评测体系的构建、评测方法以及裁判模型的训练过程。
值得一提的是,他们首次将“中国传统价值观”(“和谐”、“仁”、“礼”、“中庸”)融入到大模型的安全评测体系里去了,是最具有中国特色的大模型安全评测体系了。
另外,他们还强调测评样本的质量,只有攻击成功的样本才能进入测评数据集。
Flames榜单是采取公开测试、公开排名的方式。
榜单地址:
https://flames.opencompass.org.cn/leaderboard
SuperCLUE-Safety
SuperCLUE-Safety是由业内影响力较高的第三方评测机构SuperCLUE发起的,包含传统安全、负责任和指令安全三个大类共20余小类安全维度。
除了安全性的评测之外,SuperCLUE本身还做大模型性能测试,他们对大模型技术相当了解,在测评的时候会充分使用专属大模型的交互方式进行评测。
例如他们会引入多轮攻击,来测试是否能绕过大模型的防御机制。
他们的榜单更新频率非常高,并且对外提供评测服务,是最勤奋的一个榜单了。
榜单地址:
https://www.superclueai.com/
相比大模型安全框架和相关政策文件,安全评测榜单中的评测维度更具有实操性。
尤其是一些榜单测评机构会提供详细的测试样例,这为厂商和企业提供了非常具体的安全基准参考。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。