过去的两年里,AI可谓席卷各行各业,企业用AI,大家都面临着这样一个问题:AI这么强大,我的企业如何能充分用起来?如何能用好AI?如何能更安全更便宜地使用AI?所以今天就给大家介绍下,企业AI落地开源三剑客:Dify、RAGFlow、n8n。
Dify、RAGFlow、n8n三者区别
先抛出大家最感兴趣和最关心的,下面是我使用后总结出来的三者区别,大家赶紧Mark住,可不是网上随便找来或AI生成凑数的,绝对都是真实的使用感受。
下面针对每一个,进行详细的介绍。
Dify
首先介绍下使用门槛最低、知名度最高、使用面最广、对标字节Coze平台,但是可本地部署的开源智能体神器:Dify。(本地部署可极大降低信息外泄的问题,原则上内网使用,限制访问公共网络可完全解决安全性问题,但这样会使有些功能受限,例如插件无法安装等,后面两个工具也是一样)
官网文档:https://docs.dify.ai/zh-hans/introduction
Github地址:https://github.com/langgenius/dify
Stars数:101K
Dify简介:关于Dify的介绍,我个人的理解概括为下面3点:
- 它是一个创建智能体的低代码平台,可零代码快速创建智能体,对标字节的Coze平台。
- 一般情况下,社区版(开源版)即可满足个人或中小企业基本需求,如需多租户和对安全性有更高的要求,建议选择企业版(商业版)。
- 更重要的是,它的社区活跃、文档齐全、功能强大、可扩展性强、学习成本低、上手快。
安装:建议使用Docker方式进行安装,简单快捷。虽然给出的最低电脑配置是2核+4G内存,但我个人建议用4核+8G比较稳妥。
Dify的版本更新的很快,如果要升级,注意备份存储卷。(数据存储在项目目录的docker/volumes下)
RAGFlow
第二个,介绍下稍微复杂些,需要有一定RAG基础才能轻松驾驭,但最接近企业级的知识库平台:RAGFlow。所以越是好用的工具,越想充分发挥出工具的特性,往往需要一定的技术储备。否则里面有些设置,要是不懂RAG的情况下,很难理解。
官网文档:https://ragflow.io/docs/dev/
Github地址:https://github.com/infiniflow/ragflow
Stars数:54.3K
RAGFlow简介:关于RAGFlow的介绍,我也用同样用自己的理解概括下:
- 它是一个功能强大的知识库平台,同样支持Agent工作流的创建。
- 它可以覆盖从数据清洗、知识构建到知识问答的全流程能力,并且支持知识图谱。
- 更重要的是,它同样社区活跃(依托LangChain生态)、文档齐全、上手成本略高(需具备一定RAG基础,不适合初学者)
安装:建议使用Docker方式进行安装,简单快捷。但是它对电脑配置的要求很高,因为它的定位是给企业使用,而不是针对个人的,所以建议选择Linux服务器安装(如果个人想Mac安装使用,有很多的坑)。配属上,个人推荐最低8核+32G内存,SSD硬盘。
同样的,关于具体的使用这里不详细介绍了,后面会写公众号文章专门详细介绍RAGFlow的使用,建议大家持续关注。极客e家聚焦技术发展趋势和行业最新动态,定期分享优质的技术文章和工具,让您在极客文化的熏陶中有所收获,助您走向技术大牛之路。197篇原创内容公众号**
****n8n**最后,介绍一个最复杂,但是最好用,被业界称为瑞士军刀的工作流工具,一般适合IT人员上手使用的开源明星产品:n8n。他的Star数增长的速度令人咂舌,可见业界对他的认可程度有多高。官网文档:https://docs.n8n.io/Github地址:https://github.com/n8n-io/n8nStars数:103Kn8n简介:关于n8n的介绍,同样用下面三句话进行概括:它是一个社区活跃的低代码工作流自动化平台,擅长于连接各种服务和中间件,严格来说它不是专为AI而生的工作流平台。
开源版即可满足基本需求,如需使用SSO登录、监控统计、并发执行等功能,可以考虑付费版本。它同样功能强大、社区活跃、模版丰富、文档齐全、上手门槛较高,虽然也是低代码平台,但更适合IT从业人员。
安装:配属上,推荐4核+8G即可,但为了更好的扩展性,也可以参考下面官方推荐的配置,但我个人感觉前期没必要堆那么多核的CPU,反而内存应该稍微大一些。
具体安装,还是建议使用Docker方式进行安装,简单快捷。官方默认是没有中文版的,安装完是英文版,但是我们可以对其进行汉化。官方原版:汉化版:
汉化后,访问的地址是:http://localhost:15678 主要是端口变了,可以在docker-compose.yml文件中找到。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。