在信息爆炸的今天,"问了等于没问"的检索体验已成为常态。面对复杂问题时,我们需要的不只是搜索框中的一堆链接,而是真正“会思考、能追问、懂引用”的智能体。
❝
就在近日,Google 正式开源了一套堪称“搜索终结者”的 AI 研究系统 —— Gemini Fullstack LangGraph Quickstart,结合其最新的 Gemini 2.5 模型 与开源 LangGraph 框架,搭建了一个完整的“深度研究特工”系统。
这套系统不仅能自动生成查询、整合信息,还能识别知识缺口、反思搜索策略,并输出带有 引用溯源 的答案,展现出类人研究者般的工作流程。本文将带你全面解析其架构、核心机制与本地部署方式,为构建下一代 Research Agent 提供清晰范式。
一、项目亮点:不仅能答,更能“追问”
项目地址:github.com/google-gemini/gemini-fullstack-langgraph-quickstart
这个“全栈式智能体”系统核心理念是:让对话式 AI 不再只是生成回答,而是通过透明、可追溯的研究流程,提供有据可依的见解。其关键能力包括:
- LangGraph 智能体:由 LangChain 推出的开源框架,支持以图结构构建复杂推理流程。
- Gemini 模型集成:Google 最新的多模态大模型系列,用于生成搜索词、反思信息质量及回答构建。
- 动态搜索策略:智能体可根据用户提问实时生成搜索词,并迭代优化检索路径。
- 信息反思能力:基于初步结果,模型会识别“知识盲区”,并主动追加搜索。
- 引用溯源:最终回答包含明确的网页来源,增强可信度。
- 热重载开发体验:支持前后端热更新,便于本地调试与修改。
二、技术架构全览:React × FastAPI × LangGraph 三剑合璧
该项目采用经典的前后端分离设计:
- 前端(frontend/):基于 Vite + React + Tailwind CSS + Shadcn UI,构建现代感十足的对话界面。
- 后端(backend/):基于 FastAPI 框架,核心逻辑封装在
backend/src/agent/graph.py
,调用 LangGraph 构建智能体流程图。
LangGraph 的强大之处在于将复杂推理过程结构化表示 —— 每一个节点代表模型调用或工具操作,节点之间用状态流转的边连接,实现清晰的数据与控制流程管理。
三、智能体五步走:模仿人类研究者的思维链
整个“研究智能体”从接收问题到输出答案,大致分为五大阶段:
- 生成初始搜索词接收用户输入后,调用 Gemini 模型智能生成若干关键词组,作为首轮搜索起点。
- 发起 Web 检索结合 Gemini + Google Search API,抓取相关网页内容。
- 反思与缺口分析模型对检索结果进行质量评估:是否回答充分?是否存在遗漏?信息是否偏颇?
- 迭代补全若发现信息缺口,则自动重新生成搜索词并再次检索,重复 2-3 步骤,直至满足“足够好”标准。
- 组织回答并附带引用最终用 Gemini 汇总所有可靠信息,输出结构化答案,并标注数据来源,增强可验证性。
这套循环推进、反思驱动的工作流,极大拉近了“AI 研究员”与真实研究者之间的差距。
四、本地体验指南:快速跑通,立即上手
若想本地部署体验,只需以下几步:
环境准备
- 前端:Node.js + npm/yarn/pnpm
- 后端:Python 3.8+
- 必须申请
GEMINI_API_KEY
并写入backend/.env
安装步骤
# 安装后端
cd backend
pip install .
# 安装前端
cd frontend
npm install
启动开发模式
make dev # 同时启动前后端
或分开运行:
- 后端:
langgraph dev
(默认开放接口于http://127.0.0.1:2024
) - 前端:
npm run dev
(默认在http://localhost:5173
)
确保前端代码中的 apiUrl
指向后端服务地址。
五、部署上云:Redis + Postgres 构建高可靠架构
项目支持 生产部署,关键组件包括:
- Redis:用作 LangGraph 的 pub-sub 中枢,实时推送 agent 输出。
- PostgreSQL:管理线程状态、历史记录、agent 配置与任务队列。
官方推荐用 Docker Compose 一键部署:
GEMINI_API_KEY=<your_gemini_api_key> LANGSMITH_API_KEY=<your_langsmith_api_key> docker-compose up
此配置支持 LangSmith 接入,实现智能体过程可观测、可调试。
服务地址:
- 应用入口:
http://localhost:8123/app/
- API 接口:
http://localhost:8123
六、架构组合拳:AI×工程×开源工具完美协同
模块 | 技术栈 |
---|---|
前端 UI | React + Vite + Tailwind CSS + Shadcn UI |
后端接口 | FastAPI |
智能体框架 | LangGraph |
核心模型 | Google Gemini |
支撑基础设施 | Redis + PostgreSQL |
部署方式 | Docker / Docker Compose |
整个项目遵循 Apache 2.0 协议,欢迎自由 Fork、扩展与魔改。
七、结语:下一代“研究型 AI Agent”的范本已然出现
虽然它还不能代替专业研究者,但 Gemini Fullstack LangGraph Quickstart 无疑提供了一个强有力的模板 —— 如何构建 可追溯、有反思能力、会自我修正的 AI Agent。
这是一次 AI 应用于知识检索的范式跃迁,或许未来的信息检索将不再是“关键词+结果页”的粗暴逻辑,而是像这样具备深入理解与反复求证能力的研究特工。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。