DATAWHALE-强化学习-TASK01(转)

强化学习task01习题

强化学习的questions习题

1.强化学习的基本结构是什么
答:
本质上是Agent和Environment间的交互。具体地,当Agent在Environment中得到当前时刻的State,Agent会基于此状态输出一个Action。然后这个Action会加入
到Environment中去并输出下一个State和当前的这个Action得到的Reward。Agent 在Environment里面存在的目的就是为了极大它的期望积累的Reward。

2.强化学习相对于监督学习为什么训练会更加困难?(强化学习的特征)
答:

  1. 强化学习处理的多是序列数据,其很难像监督学习的样本一样满足IID(独立同分布)条件。
  2. 强化学习有奖励的延迟(Delay Reward),即在Agent的action作用在Environment中时,Environment对于Agent的State的奖励的延迟(Delayed Reward),使得
    反馈不及时。
  3. 相比于监督学习有正确的label,可以通过其修正自己的预测,强化学习相当于一个“试错”的过程,其完全根据Environment的“反馈”更新对自己最有利的
    Action。

3.强化学习的基本特征有哪些?
答:
1.有trial-and-error exploration的过程,即需要通过探索Environment来获取对这个Environment的理解。
2. 强化学习的Agent 会从Environment里面获得延迟的Reward。
3. 强化学习的训练过程中时间非常重要,因为数据都是有时间关联的,而不是像监督学习一样是IID分布的。
4.强化学习中Agent的Action会影响它随后得到的反馈。

4.近几年强化学习发展迅速的原因?
答:
1.算力(GPU、TPU)的提升,我们可以更快地做更多的 trial-and-error 的尝试来使得 Agent 在Environment里面获得很多信息,取得很大的Reward。
2.我们有了深度强化学习这样一个端到端的训练方法,可以把特征提取和价值估计或者决策一起优化,这样就可以得到一个更强的决策网络。

5.状态和观测有什么关系?
答:状态(state)是对世界的完整描述,不会隐藏世界的信息。观测(observation)是对状态的部分描述,可能会遗漏一些信息。在深度强化学习中,我们几乎总
是用一个实值向量、矩阵或者更高阶的张量来表示状态和观测。

6.对于一个强化学习 Agent,它由什么组成?
答:

  1. 策略函数(policy function),Agent 会用这个函数来选取它下一步的动作,包括随机性策略(stochastic policy)和确定性策略(deterministic
    policy)。
  2. 价值函数(value function),我们用价值函数来对当前状态进行估价,它就是说你进入现在这个状态,到底可以对你后面的收益带来多大的影响。当这个价
    值函数大的时候,说明你进入这个状态越有利。
  3. 模型(model),其表示了 Agent 对这个Environment的状态进行的理解,它决定了这个系统是如何进行的。

7.根据强化学习 Agent 的不同,我们可以将其分为哪几类?
答:

  1. 基于价值函数的 Agent。 显式学习的就是价值函数,隐式地学习了它的策略。因为这个策略是从我们学到的价值函数里面推算出来的。
  2. 基于策略的 Agent。它直接去学习 policy,就是说你直接给它一个 state,它就会输出这个动作的概率。然后在这个 policy-based agent 里面并没有去学习它的
    价值函数。
  3. 然后另外还有一种 Agent 是把这两者结合。把 value-based 和 policy-based 结合起来就有了 Actor-Critic agent。这一类 Agent 就把它的策略函数和价值函数都
    学习了,然后通过两者的交互得到一个最佳的行为。

8.基于策略迭代和基于价值迭代的强化学习方法有什么区别?
答:基于策略迭代的强化学习方法,智能体会制定一套动作策略(确定在给定状态下需要采取何种动作),并根据这个策略进行操作。强化学习算法直接对策略
进行优化,使制定的策略能够获得最大的奖励;基于价值迭代的强化学习方法,智能体不需要制定显式的策略,它维护一个价值表格或价值函数,并通过这个价
值表格或价值函数来选取价值最大的动作。基于价值迭代的方法只能应用在不连续的、离散的环境下(如围棋或某些游戏领域),对于行为集合规模庞大、动作
连续的场景(如机器人控制领域),其很难学习到较好的结果(此时基于策略迭代的方法能够根据设定的策略来选择连续的动作);基于价值迭代的强化学习算法
有 Q-learning、 Sarsa 等,而基于策略迭代的强化学习算法有策略梯度算法等。此外, Actor-Critic 算法同时使用策略和价值评估来做出决策,其中,智能体会根据
策略做出动作,而价值函数会对做出的动作给出价值,这样可以在原有的策略梯度算法的基础上加速学习过程,取得更好的效果。

9.有模型(model-based)学习和免模型(model-free)学习有什么区别?
答:针对是否需要对真实环境建模,强化学习可以分为有模型学习和免模型学习。有模型学习是指根据环境中的经验,构建一个虚拟世界,同时在真实环境和虚
拟世界中学习;免模型学习是指不对环境进行建模,直接与真实环境进行交互来学习到最优策略。总的来说,有模型学习相比于免模型学习仅仅多出一个步骤,
即对真实环境进行建模。免模型学习通常属于数据驱动型方法,需要大量的采样来估计状态、动作及奖励函数,从而优化动作策略。免模型学习的泛化性要优于
有模型学习,原因是有模型学习算需要对真实环境进行建模,并且虚拟世界与真实环境之间可能还有差异,这限制了有模型学习算法的泛化性。

10.强化学习的通俗理解
答:environment 跟 reward function 不是我们可以控制的,environment 跟 reward function 是在开始学习之前,就已经事先给定的。我们唯一能做的事情是调整 actor
里面的 policy,使得 actor 可以得到最大的 reward。Actor 里面会有一个 policy, 这个policy 决定了actor 的行为。Policy 就是给一个外界的输入,然后它会输出 actor
现在应该要执行的行为。

以上内容转自:DATAWHALE 强化学习教程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值