几百年前水的
tarjan算法(求强连通分量)(缩点)
强连通:两个点相互可达
强连通分量:集合中的点两两可达
思路:记录自己的时间戳dfs与能到达的最小时间戳low,先dfs搜索完自己能到达的点,如果更新后的最小时间戳low与己的时间戳dfs相等说明自己就是那个强连通分量顶点,如果不相等说明它可以到达更小的时间戳,那么在回溯到那个点时再处理
题目:
1.计算强连通分量数量
#include<bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
stack<int> st;
bool in[N];//是否在栈内
int dfs[N],low[N];
vector<int> ed[N];
int ptop = 0;
int num = 0;//记录强连通分量的数量
void tarjan(int x){
dfs[x] = low[x] = ++ptop;
st.push(x);
in[x] = 1;
for(auto y : ed[x]){
if(!dfs[y])
tarjan(y);
low[x] = min(low[x],low[y]);
}
if(low[x] == dfs[x]){
int y;
num++;
do{
y = st.top();
st.pop();
in[y] = 0;
}while(y != x);
}
}
int n,m;
void init(){
num = ptop = 0;
for(int i = 1;i <= n;i++){
in[i] = dfs[i] = low[i] = 0;
ed[i].clear();
}
}
int main()
{
cin >> n >> m;
while(n != 0){
init();
for(int i = 1;i <= m;i++){
int u,v;cin >> u >> v;
ed[u].push_back(v);
}
for(int i = 1;i <= n;i++)
if(!dfs[i])
tarjan(i);
if(num == 1)
cout << "Yes" << endl;
else
cout << "No" << endl;
cin >> n >> m;
}
}
2.变成强连通图的最小连接数
思路:先用tarjan缩点,然后看新的图,如果要让新的图变成强连通图,就要让每个点都有入有出,如果原图是强连通图,那么新加一点也要让其依旧为强连通图,那么只要随便连一条边进入原图,再从原图拉一条边出来,因为原图是强连通图,所以所有点两两相通,也就包括从原图连入与连出的点,因此对于强连通图来说,只要每个点都有入有出即可变为强连通图
但是如果强连通分量彼此分立那就不行,因此先用tarjan将强连通分量整合即可
#include<bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
stack<int> st;
bool in[N];//是否在栈内
int dfs[N],low[N];
int _in[N],_out[N];
vector<int> ed[N];
int belong[N];//缩点
int ptop = 0;
int num = 0;//记录强连通分量的数量
void tarjan(int x){
dfs[x] = low[x] = ++ptop;
st.push(x);
in[x] = 1;
for(auto y : ed[x]){
if(!dfs[y]){
tarjan(y);
low[x] = min(low[x],low[y]);
}
else if(in[y])
low[x] = min(low[x],dfs[y]);
}
if(low[x] == dfs[x]){
int y;
num++;
do{
y = st.top();
st.pop();
in[y] = 0;
belong[y] = num;
}while(y != x);
}
}
int n,m;
void init(){
num = ptop = 0;
for(int i = 1;i <= n;i++){
dfs[i] = low[i] = 0;
_in[i] = _out[i] = 0;
ed[i].clear();
}
}
int main()
{
ios::sync_with_stdio(false);//写了using namespace std;
int t;cin >> t;
while(t--){
cin >> n >> m;
init();
for(int i = 1;i <= m;i++){
int u,v;cin >> u >> v;
ed[u].push_back(v);
}
for(int i = 1;i <= n;i++)
if(!dfs[i])
tarjan(i);
if(num == 1){
cout << 0 << endl;
continue;
}
for(int i = 1;i <= n;i++){
for(auto x:ed[i]){
if(belong[x] != belong[i]){
_in[belong[x]]++;
_out[belong[i]]++;
}
}
}
int __in = 0,__out = 0;
for(int i = 1;i <= num;i++){
if(_in[i] == 0)
__in++;
if(_out[i] == 0)
__out++;
}
cout << max(__in,__out) << endl;
}
}
3.让所有点都能流到需要的最小费用
题意:联系第
i
i
i人需要
a
i
a_i
ai的费用,那些人有些又可以联系其他人,问最小的费用联系到所有人
思路:先缩点,然后看入边,如果入边为0说明需要联系,在这个集合里找最小加上即可
#include<bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
stack<int> st;
bool in[N];//是否在栈内
int dfs[N],low[N];
vector<int> ed[N];
int belong[N];//缩点
int ptop = 0;
int num = 0;//记录强连通分量的数量
void tarjan(int x){
dfs[x] = low[x] = ++ptop;
st.push(x);
in[x] = 1;
for(auto y : ed[x]){
if(!dfs[y]){
tarjan(y);
low[x] = min(low[x],low[y]);
}
else if(in[y])
low[x] = min(low[x],dfs[y]);
}
if(low[x] == dfs[x]){
int y;
num++;
do{
y = st.top();
st.pop();
in[y] = 0;
belong[y] = num;
}while(y != x);
}
}
int n,m;
int mi[N];
int _in[N];
void init(){
num = ptop = 0;
for(int i = 1;i <= n;i++){
dfs[i] = low[i] = 0;
_in[i] = 0;
ed[i].clear();
mi[i] = 1e9;
}
}
int a[N];
int main()
{
ios::sync_with_stdio(false);//写了using namespace std;
while(cin >> n >> m){
init();
for(int i = 1;i <= n;i++)
cin >> a[i];
for(int i = 1;i <= m;i++){
int u,v;cin >> u >> v;
ed[u].push_back(v);
}
for(int i = 1;i <= n;i++)
if(!dfs[i])
tarjan(i);
for(int i = 1;i <= n;i++){
for(auto x : ed[i]){
if(belong[x] != belong[i]){
_in[belong[x]]++;
}
}
}
for(int i = 1;i <= n;i++)
mi[belong[i]] = min(a[i],mi[belong[i]]);
int ans = 0,nnum = 0;
for(int i = 1;i <= num;i++){
if(_in[i] == 0){
ans += mi[i];
nnum++;
}
}
cout << nnum << ' ' << ans << endl;
}
}