单源最短路算法总结(拓扑、dijkstra、Floyd、Bellman-ford、SPFA) 以洛谷P1807 最长路为例

题目

前情提要:求最长路可以转换为最短路,把每条边都*-1就能把求最长路转换为求最短路,最后输出时再*-1即可(翻翻题解,大佬NB)

1.拓扑排序(感觉是神)(好吧,拓扑排序只适用无环图,老老实实学其他算法吧)

拓扑排序简介:icon-default.png?t=N7T8https://blog.csdn.net/xxcdsg/article/details/127720727

适用条件:无环图

思路分析:拓扑排序能实现排到每个节点时,之前的节点均遍历过,也就保证了这个节点的最值性,也就是说保证每个节点算完才算之后的节点。

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1.5e3 + 10,MAXM = 5e4 + 10;
int a[MAXN] = {0,1};//记录距离1的层数
int son[MAXN];//记录入度

//构图
int ptop = 1;
struct link{
	int next,val;
	link* nex;
}p[MAXM];
link *head[MAXN];
void add(int x,int y,int val)
{
	p[ptop].nex = head[x];
	head[x] = &p[ptop];
	p[ptop].next = y;
	p[ptop].val = val;
	ptop++;
}

//拓扑排序
queue<int> qu;

//广搜
void dfs(int x)
{
	link* pp = head[x];
	while(pp != NULL)
	{
		int y = pp -> next,val = pp -> val;
		son[y]--;
		if(son[y] == 0)
			qu.push(y);
		if(a[x] != 0)
			if(a[y] < a[x] + val)
				a[y] = a[x] + val;//更新距离1的层数
		pp = pp -> nex;
	}
}
int main()
{
	int n,m;cin >> n >> m;
	for(int i = 1;i <= m;i++)
	{
		int x,y,val;scanf("%d %d %d",&x,&y,&val);
		add(x,y,val);
		son[y]++;
	}
	for(int i = 1;i <= n;i++)
		if(son[i] == 0)
			qu.push(i);
	while(!qu.empty())
	{
		int x = qu.front();qu.pop();
		dfs(x);
	}
	cout << a[n] - 1 << endl;
}

效率:41ms\1.20MB

2.dijkstra算法

适用条件:无负权

思路:如果一个节点到起点的距离为现在所有还没遍历的节点的最小值,那么它就无法找到比它距离更小的距离(以没有负距离为前提,所以有负权的图不能用)

步骤:

1.初始化起点距离为0,其他为INF

2.找最小距离的节点并更新它的出边(使用优先队列(堆) + 结构体来优化)

3.标记该节点已处理

4.重复2、3步骤直到所有节点(或者你要找的点)均被处理

图示:

 emmm因为不能有负权值,所以例题洛谷P1807 最长路过不了,所以我找了另外一个例题洛谷P4779 【模板】单源最短路径(标准版)

代码(稍稍折磨了一小时):

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 10,MAXM = 2e5 + 10;

struct node{
	int dis,p;
	bool operator <(const node &x)const{
		return dis > x.dis;
	}//重载运算符
};
priority_queue<node> a;//存点

//构图
int ptop = 1;
struct link{
	int next,val;
	link* nex;
}p[MAXM];
link* head[MAXN];
void add(int x,int y,int val)
{
	p[ptop].nex = head[x];
	p[ptop].next = y;
	p[ptop].val = val;
	head[x] = &p[ptop];
	ptop++;
}

int dis[MAXN];//距离答案

bool use[MAXN];
int main()
{
	int n,m,s;cin >> n >> m >> s;
	for(int i = 1;i <= m;i++)
	{
		int x,y,val;scanf("%d %d %d",&x,&y,&val);
		add(x,y,val);
	}
	a.push((node){0,s});
	while(!a.empty())
	{
		int predis = a.top().dis,po = a.top().p;a.pop();
		if(use[po])
		continue;
		use[po] = 1;
		dis[po] = predis;//确定这个点
		link* pp = head[po];
		while(pp != NULL)
		{
			int nextp = pp -> next,val = pp -> val;
			if(!use[nextp] && (dis[nextp] == 0 || dis[nextp] >= predis + val))
			{
				dis[nextp] = predis + val;
				a.push((node){dis[nextp],nextp});
			}
			pp = pp -> nex;
		}
	}
	for(int i = 1;i <= n;i++)
		cout << dis[i] << ' ';
}

3.Floyd弗洛伊德算法(暴力,真是太暴力了)

适用条件:数据量小的情况,毕竟O(n^3)时间复杂度

思想:枚举中间点,起点,终点来进行松弛,就像把每条路径比作绳子,你把它拉到最长。

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1.5e3 + 10,MAXM = 5e4 + 10;
int a[MAXN][MAXN] = {0};
int main()
{
	int n,m;cin >> n >> m;
	for(int i = 1;i <= n;i++)
	for(int j = 1;j <= n;j++)
	if(i == j);
	else
	a[i][j] = -1;
	for(int i = 1;i <= m;i++)
	{
		int x,y,val;scanf("%d %d %d",&x,&y,&val);
		if(a[x][y] < val)//存最长的
		a[x][y] = val;
	}
	for(int k = 1;k <= n;k++)
		for(int i = 1;i <= n;i++)
			if(a[i][k] != -1)
				for(int j = 1;j <= n;j++)
					if(a[k][j] != -1)
					{
						a[i][j] = min(a[i][j],a[i][k] + a[k][j]);
					}
	cout << a[1][n];
}

效率:203ms/4.53MB

4.Bellman-ford算法(这也好暴力,时间复杂度:O(MN))

思想:有n个节点,那么路径长度肯定小于n - 1,那么我们进行n - 1次松弛便能得到最短(长)路

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1.5e3 + 10,MAXM = 5e4 + 10,INF = 0x3f3f3f3f;

//构图
struct link{
	int nextp,val;
	link* nex;
}p[MAXM];
link *head[MAXN];
int ptop = 1;
void add(int x,int y,int val)
{
	p[ptop].nex =  head[x];
	head[x] = &p[ptop];
	p[ptop].nextp = y;
	p[ptop].val = val;
	ptop++;
}

int dis[MAXN] = {0};
void Bellman_ford(int n)
{
	for(int i = 2;i <= n;i++)
	{
		dis[i] = INF;//不连通
	}
	for(int i = 1;i < n;i++)
	{
		for(int j = 1;j <= n;j++)
		{
			if(dis[j] == INF)
			continue;
			link* pp = head[j];
			while(pp != NULL)
			{
				int y = pp -> nextp,val = pp -> val;
				if(dis[y] == INF)
					dis[y] = dis[j] + val;
				else if(dis[y] < dis[j] + val)
					dis[y] = dis[j] + val;
				pp = pp -> nex;
			}
		}
	}
}

int main()
{
	int n,m;cin >> n >> m;
	for(int i = 1;i <= m;i++)
	{
		int x,y,val;scanf("%d %d %d",&x,&y,&val);
		add(x,y,val);
	}
	Bellman_ford(n);
	if(dis[n] == INF)
	cout << -1;
	else
	cout << dis[n];
}

效率:225ms/1.15MB

5.SPFA算法(本质为搜索,判断是否需要松弛)

思路:搜索队列中的点,找到相邻的点并更新与起点的距离,如果更新了,那么后面的点也可能要更新,所以加入队列。

步骤:

1.将起点加入队列

2.从队列中取一点,遍历其下一节点,如果需要更新,更新并加入队列

3.重复2步骤直到队列为空

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1.5e3 + 10,MAXM = 5e4 + 10,INF = 0x3f3f3f3f;

//构图
struct link{
	int nextp,val;
	link* nex;
}p[MAXM];
link *head[MAXN];
int ptop = 1;
void add(int x,int y,int val)
{
	p[ptop].nex =  head[x];
	head[x] = &p[ptop];
	p[ptop].nextp = y;
	p[ptop].val = val;
	ptop++;
}

int dis[MAXN] = {0};
void SPFA(int n)
{
	for(int i = 2;i <= n;i++)//除起点距离均为INF
		dis[i] = INF;
	queue<int> qu;
	qu.push(1);//起点入队
	while(!qu.empty())
	{
		int x = qu.front();qu.pop();
		link* pp = head[x];
		if(dis[x] != INF)
		while(pp != NULL)
		{
			int y = pp -> nextp,val = pp -> val;
			if(dis[y] == INF || dis[y] < dis[x] + val)
			{
				qu.push(y);
				dis[y] = dis[x] + val;
			}
			pp = pp -> nex;
		}
	}
}

int main()
{
	int n,m;cin >> n >> m;
	for(int i = 1;i <= m;i++)
	{
		int x,y,val;scanf("%d %d %d",&x,&y,&val);
		add(x,y,val);
	}
	SPFA(n);
	if(dis[n] == INF)
	cout << -1;
	else
	cout << dis[n];
}

效率:73ms/1.16MB

不过这种算法非常容易被(坏心眼的)构造数据卡导致达到复杂度上界O(MN),这时我们就要对这种算法进行优化(玄学)

1.栈优化(劣化):就是把广度搜索改成深度搜索,在这题的效率为

172ms/1.16MB,属实劣化

2.堆优化:改队列为堆(优先队列),属实吓到我了

效率:458ms/1.16MB

然后我想了一下,优先队列默认为大根堆,所以适用于求最小,而这题要求最大,所以效率如此"惊人",如果改成小根堆(priority_queue <int,vector<int>,less<int>>)的话

效率:70ms/1.28MB(这就对了嘛)

来点正经的优化

3.SLF(Small Label First):直译小标签优先,就是拿要加入队列的节点与起点的距离和队列头相比,如果比它小就放在队首,否则放在队尾,很玄学,当然这是我们就要使用双端队列了(STL真好用)(这题是最大所以反过来)

部分代码:

void SPFA(int n)
{
	for(int i = 2;i <= n;i++)//除起点距离均为INF
		dis[i] = INF;
	deque<int> qu;//双端队列
	qu.push_front(1);//起点入队
	while(!qu.empty())
	{
		int x = qu.front();qu.pop_front();
		link* pp = head[x];
		if(dis[x] != INF)
		while(pp != NULL)
		{
			int y = pp -> nextp,val = pp -> val;
			if(dis[y] == INF || dis[y] < dis[x] + val)
			{
				dis[y] = dis[x] + val;
				if(qu.empty())//如果为空,直接放
				qu.push_front(y);
				else if(dis[qu.front()] < dis[y])//如果比较大,放队首
				qu.push_front(y);
				else//比较小放队尾
				qu.push_back(y);
			}
			pp = pp -> nex;
		}
	}
}

效率:75ms/1.21MB

4.LLL(Large Label Last):直译大标签最后,但是不同于SLF,它是在从数列取数时,如果取出的数大于队列中的数的平均值则将它放在队列最后,直到取出的数小于队列中的数的平均值。

部分代码:

void SPFA(int n)
{
	int sum = 0,num = 1;
	for(int i = 2;i <= n;i++)//除起点距离均为INF
		dis[i] = INF;
	queue<int> qu;
	qu.push(1);//起点入队
	while(!qu.empty())
	{
		int x = qu.front();
		while(dis[x] * num < sum)//核心 小于平均值
		{
			qu.pop();
			qu.push(x);
			x = qu.front();
		}
		qu.pop();
		sum -= dis[x];
		num--;
		link* pp = head[x];
		while(pp != NULL)
		{
			int y = pp -> nextp,val = pp -> val;
			if(dis[y] == INF || dis[y] < dis[x] + val)
			{
				dis[y] = dis[x] + val;
				qu.push(y);
				sum += dis[y];
				num++;
			}
			pp = pp -> nex;
		}
	}
}

效率:69ms/1.22MB

5.SLF + LLL:既然SLF和LLL一个针对入队,一个针对出队,那么结合一下也是可以的

部分代码:

void SPFA(int n)
{
	for(int i = 2;i <= n;i++)//除起点距离均为INF
		dis[i] = INF;
	deque<int> qu;//双端队列
	int sum = 0,num = 1;
	qu.push_front(1);//起点入队
	while(!qu.empty())
	{
		int x = qu.front();
		while(dis[x] * num < sum)//核心 小于平均值
		{
			qu.pop_front();
			qu.push_back(x);
			x = qu.front();
		}
		qu.pop_front();
		sum -= dis[x];
		num--;
		link* pp = head[x];
		if(dis[x] != INF)
		while(pp != NULL)
		{
			int y = pp -> nextp,val = pp -> val;
			if(dis[y] == INF || dis[y] < dis[x] + val)
			{
				dis[y] = dis[x] + val;
				sum += dis[y];
				num++;
				if(qu.empty())//如果为空,直接放
				qu.push_front(y);
				else if(dis[qu.front()] < dis[y])//如果比较大,放队首
				qu.push_front(y);
				else//比较小放队尾
				qu.push_back(y);
			}
			pp = pp -> nex;
		}
	}
}

效率:99ms/1.20MB(?????)(可能是这道题数据太水的问题)

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,下面是使用C语言实现Dijkstra算法SPFA算法Bellman-Ford算法的代码示: 1. Dijkstra算法: ```c #include <stdio.h> #include <stdbool.h> #define INF 99999 #define V 6 int minDistance(int dist[], bool visited[]) { int min = INF, min_index; for (int v = 0; v < V; v++) { if (visited[v] == false && dist[v] <= min) { min = dist[v]; min_index = v; } } return min_index; } void printSolution(int dist[]) { printf("Vertex\tDistance from Source\n"); for (int i = 0; i < V; i++) { printf("%d\t%d\n", i, dist[i]); } } void dijkstra(int graph[V][V], int source) { int dist[V]; bool visited[V]; for (int i = 0; i < V; i++) { dist[i] = INF; visited[i] = false; } dist[source] = 0; for (int count = 0; count < V - 1; count++) { int u = minDistance(dist, visited); visited[u] = true; for (int v = 0; v < V; v++) { if (!visited[v] && graph[u][v] && dist[u] != INF && dist[u] + graph[u][v] < dist[v]) { dist[v] = dist[u] + graph[u][v]; } } } printSolution(dist); } int main() { int graph[V][V] = { {0, 4, 0, 0, 0, 0}, {4, 0, 8, 0, 0, 0}, {0, 8, 0, 7, 0, 4}, {0, 0, 7, 0, 9, 14}, {0, 0, 0, 9, 0, 10}, {0, 0, 4, 14, 10, 0} }; dijkstra(graph, 0); return 0; } ``` 2. SPFA算法: ```c #include <stdio.h> #include <stdbool.h> #include <limits.h> #define V 5 // 图中顶点的数量 typedef struct { int u; int v; int weight; } Edge; void printSolution(int dist[]) { printf("Vertex\tDistance from Source\n"); for (int i = 0; i < V; i++) { printf("%d\t%d\n", i, dist[i]); } } void spfa(int graph[V][V], int source) { int dist[V]; bool inQueue[V]; for (int i = 0; i < V; i++) { dist[i] = INT_MAX; inQueue[i] = false; } dist[source] = 0; // 创建一个队列,用于存储顶点索引 int queue[V]; int front = -1; int rear = -1; // 将起始顶点加入队列 queue[++rear] = source; inQueue[source] = true; while (front != rear) { int u = queue[++front]; inQueue[u] = false; for (int v = 0; v < V; v++) { if (graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) { dist[v] = dist[u] + graph[u][v]; if (!inQueue[v]) { queue[++rear] = v; inQueue[v] = true; } } } } printSolution(dist); } int main() { int graph[V][V] = { {0, 4, 0, 0, 0}, {4, 0, 8, 0, 0}, {0, 8, 0, 7, 0}, {0, 0, 7, 0, 9}, {0, 0, 0, 9, 0} }; spfa(graph, 0); return 0; } ``` 3. Bellman-Ford算法: ```c #include <stdio.h> #include <stdbool.h> #include <limits.h> #define V 5 // 图中顶点的数量 #define E 8 // 图中边的数量 typedef struct { int u; int v; int weight; } Edge; void printSolution(int dist[]) { printf("Vertex\tDistance from Source\n"); for (int i = 0; i < V; i++) { printf("%d\t%d\n", i, dist[i]); } } void bellmanFord(Edge edges[], int source) { int dist[V]; for (int i = 0; i < V; i++) { dist[i] = INT_MAX; } dist[source] = 0; for (int i = 1; i < V; i++) { for (int j = 0; j < E; j++) { int u = edges[j].u; int v = edges[j].v; int weight = edges[j].weight; if (dist[u] != INT_MAX && dist[u] + weight < dist[v]) { dist[v] = dist[u] + weight; } } } // 检查是否存在负权回 for (int i = 0; i < E; i++) { int u = edges[i].u; int v = edges[i].v; int weight = edges[i].weight; if (dist[u] != INT_MAX && dist[u] + weight < dist[v]) { printf("Graph contains negative weight cycle\n"); return; } } printSolution(dist); } int main() { Edge edges[E] = { {0, 1, -1}, {0, 2, 4}, {1, 2, 3}, {1, 3, 2}, {1, 4, 2}, {3, 2, 5}, {3, 1, 1}, {4, 3, -3} }; bellmanFord(edges, 0); return 0; } ``` 以上是使用C语言实现Dijkstra算法SPFA算法Bellman-Ford算法的代码示。希望对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值