深度学习之线性代数
标量
如果你从来没有学过线性代数或机器学习,那么你过去的数学经历可能是一次只想一个数字。如果你曾经用钱买个茶叶蛋,或者在付过打车费,那么你已经知道如何做一些基本的事情,比如在数字间相加或相乘。例如,上海的温度现在为13摄氏度。严格来说,我们称仅包含一个数值的叫 标量 (scalar)。在数学表示法,其中标量变量由普通小写字母表示(例如,x、y 和 z)。我们用 R 表示所有(连续)实数 标量的空间。
向量
你可以将向量视为标量值组成的列表。我们将这些标量值称为向量的 元素(elements)或分量(components)。当我们的向量表示数据集中的样本时,它们的值具有一定的现实意义。例如,如果我们正在训练一个模型来预测贷款违约风险,我们可能会将每个申请人与一个向量相关联,其分量与其收入、工作年限、过往违约次数和其他因素相对应。如果我们正在研究医院患者可能面临的心脏病发作风险,我们可能会用一个向量来表示每个患者,其分量为最近的生命体征、胆固醇水平、每天运动时间等。在数学表示法中,我们通常将向量记为粗体、小写的符号(例如,x、y和z)。
矩阵
正如向量将标量从零阶推广到一阶,矩阵将向量从一阶推广到二阶。矩阵,我们通常用粗体、大写字母来表示(例如,X、Y 和Z)。在数学表示法中,我们使用 A ∈ R m × n A \in R^{m×n} A∈Rm×n来表示矩阵 A ,其由m行和n列的实值标量组成。直观地,我们可以将任意矩阵 A ∈ R m × n A \in R^{m×n} A∈Rm×n视为一个表格,其中每个元素 $ a_{ij}$ 属于第i行第i列:
[ a 11 a 12 ⋯