深度学习之线性代数

这篇博客介绍了深度学习中的线性代数基础知识,包括标量、向量和矩阵的概念。标量是单一数值,向量是标量值的列表,矩阵则是向量的推广,用于表示数据集的结构。文中强调矩阵分解在揭示数据低维结构和机器学习中的重要性,并鼓励读者深入学习线性代数以提升机器学习能力。
摘要由CSDN通过智能技术生成
深度学习之线性代数

标量

如果你从来没有学过线性代数或机器学习,那么你过去的数学经历可能是一次只想一个数字。如果你曾经用钱买个茶叶蛋,或者在付过打车费,那么你已经知道如何做一些基本的事情,比如在数字间相加或相乘。例如,上海的温度现在为13摄氏度。严格来说,我们称仅包含一个数值的叫 标量 (scalar)。在数学表示法,其中标量变量由普通小写字母表示(例如,x、y 和 z)。我们用 R 表示所有(连续)实数 标量的空间。

向量

你可以将向量视为标量值组成的列表。我们将这些标量值称为向量的 元素(elements)或分量(components)。当我们的向量表示数据集中的样本时,它们的值具有一定的现实意义。例如,如果我们正在训练一个模型来预测贷款违约风险,我们可能会将每个申请人与一个向量相关联,其分量与其收入、工作年限、过往违约次数和其他因素相对应。如果我们正在研究医院患者可能面临的心脏病发作风险,我们可能会用一个向量来表示每个患者,其分量为最近的生命体征、胆固醇水平、每天运动时间等。在数学表示法中,我们通常将向量记为粗体、小写的符号(例如,xyz)。

矩阵

正如向量将标量从零阶推广到一阶,矩阵将向量从一阶推广到二阶。矩阵,我们通常用粗体、大写字母来表示(例如,XYZ)。在数学表示法中,我们使用 A ∈ R m × n A \in R^{m×n} ARm×n来表示矩阵 A ,其由m行和n列的实值标量组成。直观地,我们可以将任意矩阵 A ∈ R m × n A \in R^{m×n} ARm×n视为一个表格,其中每个元素 $ a_{ij}$ 属于第i行第i列:
[ a 11 a 12 ⋯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值