#include<bits/stdc++.h>
using namespace std;
const int INF = -1;
#define Min(a,b) a<b? a : b
#define N 200+10
int dp [N][N];
int a[N];
int sum[N];
int getMin(int *a, int n)
{
for(int i = 0; i < n; i++) // 初始化 i = j 的情况
dp[i][i] = 0;
for(int v = 1 ;v <n ;v++)//确定 区间 大小
for(int i = 0 ; i<n-v; i++)//确定 区间 起始位置
{
int j = i + v;
dp[i][j] = INF;
int tmp = sum[j] - (i > 0 ? sum[i-1]:0);
for(int k = i; k < j; k++)
dp[i][j] = Min(dp[i][j], dp[i][k] + dp[k+1][j] + tmp);//dp方程
}
return dp[0][n-1];
}
int main()
{
int n ;
while(scanf("%d",&n)!=EOF)
{
for(int i = 0 ;i< n ;i++)
scanf("%d",&a[i]);
sum[0]=a[0];
for(int i = 1 ;i< n ;i++)
sum[i] = sum[i-1] + a[i]; //可以和 scanf 中的 for 合并
printf("%d\n",getMin(a,n));
}
return 0;
}
石子合并问题
最新推荐文章于 2021-10-02 18:46:37 发布
本文深入探讨了区间动态规划的一种高效实现方法,通过预处理数组和最小值更新策略,有效地减少了状态转移过程中的计算复杂度。文章提供了一段C++代码示例,详细展示了如何在给定数组中求解最优子区间问题,适用于算法竞赛和实际问题解决。
摘要由CSDN通过智能技术生成