线性代数(二十) :行列式的性质的几何意义

本节介绍行列式性质的几何意义,也就是行列式的性质与有序单形的体积的性质之间的关系。

0 关于有序单形以及其与行列式的关系请点这里

1根据有序单形体积的性质推断出行列式的性质,该方法最早由阿根廷人提出。

D表示以a1,a2,...,an为列的矩阵的行列式

(1)性质一:若存在i不等于j有ai = aj 则行列式D = 0;

对应到有序单形,当有两个顶点重合时改单形是退化的有序单形,体积为0.

以三维空间中的有序单形为例,当两个顶点重合的时候,该单形退化为一个三角形,体积为0;

(2) 性质二:D(a1,...,an)是其自变量的多重线性函数,即如果固定全体ai(i不等于j)则D是自变量aj的线性函数。

当其他顶点固定时候单形的体积等于aj到其他顶点所在超平面的高度h乘超平面的体积S,而S是固定的.并且h是

aj的线性函数(由于aj与h的夹角是固定的,想想三维空间中一个向量的的端点到一个平面的距离)

(3) 性质三:标准化: D(e1,...,en) = 1.

这条性质很好理解,此时单形的边互相垂直,以三维空间为例此时的单形的体积是1/(3!)

D的其他性质都可以从以上三条性质推出

(4)性质四:如果交换D的自变量ai和aj,D的值将改变一个因子(-1 也就是d的符号会改变)

对应于有序单形,如果交换两个顶点的位置,那么顶点会到其超平面的另一侧,因此单形体积的符号会改变

下边利用性质(1)和性质(2)给出证明:


(5)若a1,a2,...,an线性相关,则D(a1,...an) = 0;

当向量线性相关的时候说明对应的单形是退化的单形,

以三维空间为例 此时的三个向量是共面的,因此体积是0;

下边利用性质(1)和性质(2)给出证明:

因为a1,..,an线性相关,假设a1 = k2a2+k3a3+,...,+knan;则:


  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值