行列式具有良好的性质, 通常它是线性代数中较为基本的内容. 而行列式有非常直观的几何性质, 其绝对值是以矩阵中的向量为棱的在标准正交基下的平行四边形 (六面体) 的体积, 当维数超过三维时, 有类似的结果, 我们可以称其为 “广义平行六面体” 的体积. 我们给出广义平行六面体体积的一个递归定义. 设 A A A 为 n × n n\times n n×n 矩阵, 其中第 k k k 行向量 L L L 即为广义平行六面体 V V V 的一个棱,
[ ⋮ L k ⋮ ] \newcommand\xrule{\rule[.5ex]{2em}{.4pt}} \left[\begin{matrix} &\vdots&\\ \xrule& L_k&\xrule\\ &\vdots& \end{matrix}\right] ⎣⎢⎢⎡⋮Lk⋮⎦⎥⎥⎤
以 L 2 , L 3 , … L n L_2,L_3,\dots L_n L2,L3,…Ln 为平行六面体 V V V 的底, 而以 L 1 L_1 L1 正交于 L 2 , L 3 , … L n L_2,L_3,\dots L_n L2,L3,…Ln 的分量 H H H 作为 V V V 的高, 将 L 1 L_1 L1 分为两个正交分量 H H H 与 G G G, 而 G G G 可以被 L 2 , L 3 , … L n L_2,L_3,\dots L_n L2,L3,…Ln 线性表示, 那么就有
L 1 = H + G H ⊥ G H ⊥ L 2 , L 3 , … L n G = a 2 L 2 + a 3 L 3 + ⋯ + a n L n L_1=H+G\\H\perp G\\H\perp L_2,L_3,\dots L_n\\ G=a_2L_2+a_3L_3+\dots+a_nL_n L1=H+GH⊥GH⊥L2,L3,…
行列式几何意义的证明
最新推荐文章于 2024-12-20 23:09:17 发布