行列式几何意义的证明

本文探讨了行列式的几何性质,其绝对值表示以矩阵中向量为棱的平行四面体(或广义平行六面体)在标准正交基下的体积。通过递归定义和引理证明,展示了行列式实际上是这种几何体体积的平方,进一步揭示了行列式的几何意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行列式具有良好的性质, 通常它是线性代数中较为基本的内容. 而行列式有非常直观的几何性质, 其绝对值是以矩阵中的向量为棱的在标准正交基下的平行四边形 (六面体) 的体积, 当维数超过三维时, 有类似的结果, 我们可以称其为 “广义平行六面体” 的体积. 我们给出广义平行六面体体积的一个递归定义. 设 A A A n × n n\times n n×n 矩阵, 其中第 k k k 行向量 L L L 即为广义平行六面体 V V V 的一个棱,
[ ⋮ L k ⋮ ] \newcommand\xrule{\rule[.5ex]{2em}{.4pt}} \left[\begin{matrix} &\vdots&\\ \xrule& L_k&\xrule\\ &\vdots& \end{matrix}\right] Lk
L 2 , L 3 , … L n L_2,L_3,\dots L_n L2,L3,Ln 为平行六面体 V V V 的底, 而以 L 1 L_1 L1 正交于 L 2 , L 3 , … L n L_2,L_3,\dots L_n L2,L3,Ln 的分量 H H H 作为 V V V 的高, 将 L 1 L_1 L1 分为两个正交分量 H H H G G G, 而 G G G 可以被 L 2 , L 3 , … L n L_2,L_3,\dots L_n L2,L3,Ln 线性表示, 那么就有
L 1 = H + G H ⊥ G H ⊥ L 2 , L 3 , … L n G = a 2 L 2 + a 3 L 3 + ⋯ + a n L n L_1=H+G\\H\perp G\\H\perp L_2,L_3,\dots L_n\\ G=a_2L_2+a_3L_3+\dots+a_nL_n L1=H+GHGHL2,L3,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值