卷积定理的证明
一、傅里叶变换的定义
连续函数的傅里叶变换:
令f(x)f\relax{(x)}f(x)为实变量xxx的连续函数,f(x)f\relax{(x)}f(x)的傅里叶变换以F{f(x)}F{\{f\relax{(x)}\}}F{f(x)}表示,则表达式为:
F{f(x)} = F(u) =∫−∞+∞f(x)e−j2πuxdx(3.2.1)F\{f(x)\} \,=\,F(u)\,=\int_{-\infty}^{+\infty}f(x)e^{-j2\pi ux}dx \qquad(3.2.1)F{f(x)}=F(u)=∫−∞+∞f(x)e−j2πuxdx(3.2.1)
式中:j=−1 j =\sqrt{-1}\,j=−1 ;
傅里叶变换中出现的变量u通常称为频率变量。这个名称是这样来的:用欧拉公式将(3.2.1)式中的指数项表示成下式:
e−j2πux=cos(2πux)−jsin(2πux)(3.2.2)e^{-j2\pi ux} = cos(2\pi ux) -jsin(2\pi ux) \qquad (3.2.2)e−j2πux=cos(2πux)−jsin(2πux)(3.2.2)
如果将(3.2.1)中的积分解释为离散项的和的极限,则显然包含了正弦和余弦项的无限项的和,而且 uuu 的每一个值确定了它对应的正弦——余弦的频率。
f(x)=F−1{F(u)}=∫−∞+∞F(u)ej2πuxdx(3.2.3)f(x) = F^{-1}\{F(u)\} = \int_{-\infty}^{+\infty}F(u)e^{j2\pi ux}dx \qquad (3.2.3)f(x)=F−1{F(u)}=∫−∞+∞F(u)ej2πuxdx(3.2.3)
若已知F(u),则利用傅里叶反变换为式(3.2.1)和式(3.2.2),称为傅里叶变换对,如果f(x)f(x)f(x)是连续的和可积的,且F(u)F(u)F(u)是可积的,可证明此傅里叶变换存在(我不会o(╥﹏╥)o)。事实上这些条件基本总是可以满足的。
二 、卷积的定义
设f(x),g(x)f(x),g(x)f(x),g(x)是R1上的两个可积函数,作积分:
∫−∞+∞f(τ)g(x−τ)dτ\int_{-\infty}^{+\infty}f(\tau)g(x-\tau)d\tau∫−∞+∞f(τ)g(x−τ)dτ
这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f∗g)(x)h(x)=(f*g)(x)h(x)=(f∗g)(x)。即:
h(x)=(f∗g)(x)=∫−∞+∞f(τ)g(x−τ)dτh(x) = (f*g)(x) = \int_{-\infty}^{+\infty}f(\tau)g(x-\tau)d\tauh(x)=(f∗g)(x)=∫−∞+∞f(τ)g(x−τ)dτ
三、 傅里叶变换的时移(Time Shift)性质
设 t0,w0t_0,w_0t0,w0 为实常数,F[f(t)]=F(w)F[ f(t) ] = F(w)F[f(t)]=F(w) , 则F[f(t−t0)]=F(w)e−jwt0F[f(t-t_0)] = F(w)e^{-jwt_0}F[f(t−t0)]=F(w)e−jwt0。
证明:首先,根据傅里叶变换公式可得:
F[f(t−t0)] =∫−∞+∞f(t−t0)e−jwtdtF[f(t-t_0)] \,=\int_{-\infty}^{+\infty}f(t-t_0)e^{-jwt}dtF[f(t−t0)]=∫−∞+∞f(t−t0)e−jwtdt
令x=t−t0x = t - t_0x=t−t0, 则有
F[f(t−t0)] =∫−∞+∞f(x)e−jw(x+t0)dx=e−jwt0∫−∞+∞f(x)e−jwxdx=F(w)e−jwt0F[f(t-t_0)] \,=\int_{-\infty}^{+\infty}f(x)e^{-jw(x+t_0)}dx=e^{-jwt_0}\int_{-\infty}^{+\infty}f(x)e^{-jwx}dx=F(w)e^{-jwt_0}F[f(t−t0)]=∫−∞+∞f(x)e−jw(x+t0)dx=e−jwt0∫−∞+∞f(x)e−jwxdx=F(w)e−jwt0
傅立叶变换的作用在频域对信号进行分析,我们可以把时域的信号看做是若干正弦波的线性叠加,傅立叶变换的作用正是求得这些信号的幅值和相位。既然固定的时域信号是若干固定正弦信号的叠加,在不改变幅值的情况下,在时间轴上移动信号,也就相当于同时移动若干正弦信号,这些正弦信号的相位改变、但幅值不变,反映在频域上就是傅立叶变换结果的模不变、而相位改变。所以,时移性质其实就表明当一个信号沿时间轴平移后,各频率成份的大小不发生改变,但相位发生变化。
四、卷积定理
卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。换言之,一个域中的卷积对应于另一个域中的乘积,例如,时域中的卷积对应于频域中的乘积。
设f1(t)f_1(t)f1(t)的傅里叶变换为F1(w)F_1(w)F1(w),f2(t)f_2(t)f2(t)的傅里叶变换为F2(w)F_2(w)F2(w) ,那么再时域上卷积定理可以表述为
F[f1(t)∗f2(t)]=F1(w)F2(w)F[f_1(t)*f_2(t)] = F_1(w)F_2(w)F[f1(t)∗f2(t)]=F1(w)F2(w)
相对应地,频域上的卷积定理可以表述为
F[f1(t)⋅f2(t)]=12πF1(w)∗F2(w)F[f_1(t)\cdot f_2(t)] =\dfrac{1}{2\pi} F_1(w)*F_2(w)F[f1(t)⋅f2(t)]=2π1F1(w)∗F2(w)
这里证明时域上的卷积定理:
将卷积定义带入傅里叶变换公式:
F[f1(t)∗f2(t)]=∫−∞+∞[∫−∞+∞f1(τ)f2(t−τ)dτ]e−jwtdtF[f_1(t)*f_2(t)] =\int_{-\infty}^{+\infty}[\int_{-\infty}^{+\infty}f_1(\tau)f_2(t-\tau)d\tau]e^{-jwt}dtF[f1(t)∗f2(t)]=∫−∞+∞[∫−∞+∞f1(τ)f2(t−τ)dτ]e−jwtdt
=∫−∞+∞f1(τ)[∫−∞+∞f2(t−τ)e−jwtdt]dτ=\int_{-\infty}^{+\infty}f_1(\tau)[\int_{-\infty}^{+\infty}f_2(t-\tau)e^{-jwt}dt]d\tau=∫−∞+∞f1(τ)[∫−∞+∞f2(t−τ)e−jwtdt]dτ
=∫−∞+∞f1(τ)F2(w)e−jwτdτ=\int_{-\infty}^{+\infty}f_1(\tau)F_2(w)e^{-jw\tau}d\tau=∫−∞+∞f1(τ)F2(w)e−jwτdτ
=F2(w)∫−∞+∞f1(τ)e−jwτdτ=F_2(w)\int_{-\infty}^{+\infty}f_1(\tau)e^{-jw\tau}d\tau=F2(w)∫−∞+∞f1(τ)e−jwτdτ
=F2(w)F1(w)=F_2(w)F_1(w)=F2(w)F1(w)