原题链接:Acwing 3565 完美矩阵
题目
如果一个矩阵能够满足所有的行和列都是回文序列,则称这个矩阵为一个完美矩阵。
一个整数序列 a 1 , a 2 , … , a k a_1,a_2,…,a_k a1,a2,…,ak,如果满足对于任何整数 i( 1 ≤ i ≤ k 1≤i≤k 1≤i≤k),等式 a i = a k − i + 1 a_i=a_k−i+1 ai=ak−i+1 均成立,则这个序列是一个回文序列。
给定一个 n×m 的矩阵 a,每次操作可以将矩阵中的某个元素加一或减一,请问最少经过多少次操作后,可以将矩阵 a 变为一个完美矩阵?
输入格式
第一行包含整数 T,表示共有 T 组测试数据。
每组数据第一行包含整数 n 和 m,表示矩阵的大小。
接下来 n 行,每行包含 m 个整数 a i j a_{ij} aij,表示矩阵中的元素。
输出格式
每组数据输出一行,一个答案,表示最少操作次数。
数据范围
1
≤
T
≤
10
1≤T≤10
1≤T≤10,
1
≤
n
,
m
≤
100
1≤n,m≤100
1≤n,m≤100,
0
≤
a
i
j
≤
1
0
9
0≤a_{ij}≤10^9
0≤aij≤109
输入样例:
2
4 2
4 2
2 4
4 2
2 4
3 4
1 2 3 4
5 6 7 8
9 10 11 18
输出样例:
8
42
样例解释
第一组数据可以通过 8 步操作得到以下矩阵:
2 2
4 4
4 4
2 2
第二组数据可以通过 42 步操作得到以下矩阵:
5 6 6 5
6 6 6 6
5 6 6 5
思路:
对于一个完美矩阵,要是回文序列,且要求横着竖着都是这样,实质上就是要求每一个如下对称得到的四元组都相同。
所以只需要枚举所有左上方块内的点,获得所有的四元组,然后让每个四元组都变到相等,且步数最少就可以使得整体步数最少了。
对于
a
,
b
,
c
,
d
a,b,c,d
a,b,c,d四个数,要让他们变成一样且步数最少。
即求
∣
a
−
x
∣
+
∣
b
−
x
∣
+
∣
c
−
x
∣
+
∣
d
−
x
∣
|a-x|+|b-x|+|c-x|+|d-x|
∣a−x∣+∣b−x∣+∣c−x∣+∣d−x∣最小,根据绝对值不等式可知
x
x
x 取
a
,
b
,
c
,
d
a,b,c,d
a,b,c,d 的中位数时就是最小的。如果是偶数,取中间两个数之间的任意值都可以。
考虑到这个获得的四元组可能只有2个点或者1个点,所以可以通过set存储去重,因为我们获得四元组是通过对称得到的。
偶数就枚举到中线的前面一个,奇数就枚举到了中线的那一行(或者那一列)
代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <set>
#include <vector>
#define x first
#define y second
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
int w[N][N];
LL calc(set<PII> S)
{
vector<int> q;
for (auto& p: S) q.push_back(w[p.x][p.y]);
sort(q.begin(), q.end());
LL res = 0;
for (int i = 0; i < q.size(); i ++ )
res += abs(q[i] - q[q.size() / 2]);
return res;
}
int main()
{
int T;
scanf("%d", &T);
while (T -- )
{
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
scanf("%d", &w[i][j]);
LL res = 0;
for (int i = 0; i <= n - 1 - i; i ++ )
for (int j = 0; j <= m - 1 - j; j ++ )
res += calc({{i, j},{i, m - 1 - j},{n - 1 - i, j},{n - 1 - i, m - 1 - j}});
printf("%lld\n", res);
}
return 0;
}