每日一题·夏季 [Acwing 3565] 完美矩阵

该博客详细介绍了如何通过最少的操作次数将一个矩阵转化为完美矩阵,即所有行和列都是回文序列。博主首先定义了回文序列,并给出了一种策略,通过计算矩阵中每个四元组的中位数来确定最少操作次数。具体步骤包括枚举矩阵的对角线元素,计算四个数的中位数并进行调整,最后输出总的操作步数。提供的代码示例展示了如何实现这一策略。
摘要由CSDN通过智能技术生成

原题链接:Acwing 3565 完美矩阵

题目

如果一个矩阵能够满足所有的行和列都是回文序列,则称这个矩阵为一个完美矩阵。

一个整数序列 a 1 , a 2 , … , a k a_1,a_2,…,a_k a1,a2,,ak,如果满足对于任何整数 i( 1 ≤ i ≤ k 1≤i≤k 1ik),等式 a i = a k − i + 1 a_i=a_k−i+1 ai=aki+1 均成立,则这个序列是一个回文序列。

给定一个 n×m 的矩阵 a,每次操作可以将矩阵中的某个元素加一或减一,请问最少经过多少次操作后,可以将矩阵 a 变为一个完美矩阵?

输入格式

第一行包含整数 T,表示共有 T 组测试数据。

每组数据第一行包含整数 n 和 m,表示矩阵的大小。

接下来 n 行,每行包含 m 个整数 a i j a_{ij} aij,表示矩阵中的元素。

输出格式

每组数据输出一行,一个答案,表示最少操作次数。

数据范围

1 ≤ T ≤ 10 1≤T≤10 1T10,
1 ≤ n , m ≤ 100 1≤n,m≤100 1n,m100,
0 ≤ a i j ≤ 1 0 9 0≤a_{ij}≤10^9 0aij109

输入样例:

2
4 2
4 2
2 4
4 2
2 4
3 4
1 2 3 4
5 6 7 8
9 10 11 18

输出样例:

8
42

样例解释

第一组数据可以通过 8 步操作得到以下矩阵:

2 2
4 4
4 4
2 2

第二组数据可以通过 42 步操作得到以下矩阵:

5 6 6 5
6 6 6 6
5 6 6 5

思路:

对于一个完美矩阵,要是回文序列,且要求横着竖着都是这样,实质上就是要求每一个如下对称得到的四元组都相同。
在这里插入图片描述
所以只需要枚举所有左上方块内的点,获得所有的四元组,然后让每个四元组都变到相等,且步数最少就可以使得整体步数最少了。
对于 a , b , c , d a,b,c,d a,b,c,d四个数,要让他们变成一样且步数最少。
即求 ∣ a − x ∣ + ∣ b − x ∣ + ∣ c − x ∣ + ∣ d − x ∣ |a-x|+|b-x|+|c-x|+|d-x| ax+bx+cx+dx最小,根据绝对值不等式可知 x x x a , b , c , d a,b,c,d a,b,c,d 的中位数时就是最小的。如果是偶数,取中间两个数之间的任意值都可以。
 
考虑到这个获得的四元组可能只有2个点或者1个点,所以可以通过set存储去重,因为我们获得四元组是通过对称得到的。

偶数就枚举到中线的前面一个,奇数就枚举到了中线的那一行(或者那一列)

代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <set>
#include <vector>

#define x first
#define y second

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;

const int N = 110;

int n, m;
int w[N][N];

LL calc(set<PII> S)
{
    vector<int> q;
    for (auto& p: S) q.push_back(w[p.x][p.y]);
    sort(q.begin(), q.end());
    LL res = 0;
    for (int i = 0; i < q.size(); i ++ )
        res += abs(q[i] - q[q.size() / 2]);
    return res;
}

int main()
{
    int T;
    scanf("%d", &T);
    while (T -- )
    {
        scanf("%d%d", &n, &m);
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < m; j ++ )
                scanf("%d", &w[i][j]);

        LL res = 0;
        for (int i = 0; i <= n - 1 - i; i ++ )
            for (int j = 0; j <= m - 1 - j; j ++ )
                res += calc({{i, j},{i, m - 1 - j},{n - 1 - i, j},{n - 1 - i, m - 1 - j}});
        printf("%lld\n", res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值