论文阅读:Don’t Miss the Labels: Label-semantic Augmented Meta-Learner for Few-Shot Text Classification

该研究提出了一种新的方法,针对小样本文本分类任务,通过将标签信息结合到文本中输入BERT,利用标签的语义信息增强特征向量。在支持集和查询集上采用不同的特征提取策略,并基于prototypical network改进meta-learning,提升分类性能。
摘要由CSDN通过智能技术生成

任务:小样本文本分类

创新点:已有的方法忽视了标签所蕴含的丰富语义在小样本学习中的作用,所以将标签名直接附在文本后输入BERT中,得到语义信息更加丰富的特征向量。support和query在加入标签信息后,其特征提取方法就不一样,因为query是没有标签的。所以,support和query分别采取了三种方法进行特征提取。最后使用prototypical network然后计算查询集和类别向量的欧几里得距离。再综合所有类别计算归属于某一个类别的概率。

introduction

在小样本学习领域,meta-learning作为主流方法,,通过元训练数据集学习从少数support set到分类器的映射函数来解决这个问题。与此同时PLMS在NLP领域大放异彩,通过迁移学习,在低数据资源下也可以表现出色。

不过现有的方法都忽视了标签的语义信息。当训练样本有限时,仅使用每个类的输入文本,会造成类解释的歧义。如图所示,显示了四个不同意图的文本,如果没有给出标签,人类也无法理解这些样本的语义。

 

我们发现,如果将类名附加到输入文本中一起输入到BERT中,可以提高low-shot场景的分类质量。

“Motivated by the above observations, this work explores how to better leverage the semantic information beneath class names for fewshot learning” (Luo 等。, 2021, p. 27

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>