递归定义:一个函数自己直接或者间接调用自己。
思想:规模递减
阶乘的循环实现:
int val;
int i, mult=1;
printf("请输入一个数字: ");
printf("val = ");
scanf("%d", &val);
for (i=1; i<=val; ++i)
mult = mult * i;
printf("%d的阶乘是:%d\n", val, mult);
阶乘的递归实现:
//假定n的值是1或大于1的值
long f(long n)
{
if (1 == n)
return 1;
else
return f(n-1) * n;
}
1+2+3+4+...+100用递归实现:
long sum(int n)
{
if (1 == n)
return 1;
else
return n + sum(n-1);
}
当只有一个盘子的时候,只需要从将A塔上的一个盘子移到C塔上。
当A塔上有两个盘子是,先将A塔上的1号盘子(编号从上到下)移动到B塔上,再将A塔上的2号盘子移动的C塔上,最后将B塔上的小盘子移动到C塔上。
当A塔上有3个盘子时,先将A塔上编号1至2的盘子(共2个)移动到B塔上(需借助C塔),然后将A塔上的3号最大的盘子移动到C塔,最后将B塔上的两个盘子借助A塔移动到C塔上。
当A塔上有n个盘子是,先将A塔上编号1至n-1的盘子(共n-1个)移动到B塔上(借助C塔),然后将A塔上最大的n号盘子移动到C塔上,最后将B塔上的n-1个盘子借助A塔移动到C塔上。
综上所述,除了只有一个盘子时不需要借助其他塔外,其余情况均一样(只是事件的复杂程度不一样)。
- #include <stdio.h>
- //第一个塔为初始塔,中间的塔为借用塔,最后一个塔为目标塔
- int i=1;//记录步数
- void move(int n,char from,char to) //将编号为n的盘子由from移动到to
- {printf("第%d步:将%d号盘子%c---->%c\n",i++,n,from,to);
- }
- void hanoi(int n,char from,char denpend_on,char to)//将n个盘子由初始塔移动到目标塔(利用借用塔)
- {
- if (n==1)
- move(1,from,to);//只有一个盘子是直接将初塔上的盘子移动到目的地
- else
- {
- hanoi(n-1,from,to,denpend_on);//先将初始塔的前n-1个盘子借助目的塔移动到借用塔上
- move(n,from,to); //将剩下的一个盘子移动到目的塔上
- hanoi(n-1,denpend_on,from,to);//最后将借用塔上的n-1个盘子移动到目的塔上
- }
- }
- void main()
- {
- printf("请输入盘子的个数:\n");
- int n;
- scanf("%d",&n);
- char x='A',y='B',z='C';
- printf("盘子移动情况如下:\n");
- hanoi(n,x,y,z);
- }
递归必须有一个明确的终止条件;
函数处理的数据规模必须递减;
这个转化必须是可解的。
递归和循环的比较:
前者易于理解、速度慢、存储空间大【函数的入栈出栈很耗时间】;后者不易理解、速度快、不浪费存储空间。
递归的应用:
树和森林以递归的方式定义的;树和图的很多算法以递归来实现的;数学公式以递归来定义的(斐波拉契数列)。
函数为什么能调用自己: