Stable Diffusion 改变光线的能力简直太强大了!

图片

在没有 Stable Diffusion 的年代,对照片的光线进行后期处理,基本要依靠 Photoshop。比如添加一个曝光图层。这个技术对于形状简单的物体来说很方便,因为光线效果很好模拟。但对于形状复杂的主体,比如人来说,要想实现自然的光线效果,你最好得有美术功底,并配备一个数位板。

Stable Diffusion 的出现使得改变光线变得既简单又自然,因为它学习过无数的照片里的光线,从而可以模拟出非常真实的光线效果。

本文将通过实际案例,为你一步步揭晓这一神奇的功能,让你借助 AI 的力量轻松驾驭图片里的光线。

# 任务简介

下面这张图也是 Stable Diffusion 生成的。当然,我们也可以处理相机拍出来的照片。

在这里插入图片描述

图中的光线是从主体左边照过来的。现在我们要换一个方向,变成右边照过来。如果在 Photoshop 的曝光图层上通过画笔涂抹的话,没有美术功底的人很难实现非常自然的效果。让我们看看怎样通过 Stable Diffusion 来处理。

# 用到的模型

我们将要借助 Stable Diffusion 的 ControlNet Brightness 模型。这个模型可以在 HuggingFace 上下载,地址是 huggingface.co/ioclab/ioc-controlnet/tree/main/models。
在这里插入图片描述

如果你跟我一样用这个SD云平台的话,它已经被内置在 WebUI 里啦,简直太方便!

这个模型,顾名思义,就是用来控制图像明暗。我们只需要选择它,并上传一张记载图像明暗信息的灰度图。为了改变原图的明暗,我们可以在 Photoshop 中修改它的灰度图。

# PS预处理

在 Photoshop 中将图片转换为灰度模式后,我们就可以使用减淡/加深工具来调整明暗。在需要提亮的地方,我们使用减淡工具进行涂抹;在需要调暗的地方,我们则使用加深工具进行涂抹。

这些涂抹不需要很精细,因为稍后 Stable Diffusion 会把明暗关系处理得更自然。下图是我涂抹的灰度图。

图片

我把主体头顶上方的区域由亮变暗。并把主体的右侧身体提亮,左侧身体变暗。图片左上角也增加了明亮区域。

# SD处理光线

灰度图搞定了以后,接着来到 SD 的文生图界面,选一个写实系的大模型,并填入相应的提示词。采样器根据已选择的模型来选。其它设置按照基本的来就好。可以开启高分辨率修复来增强画质。

图片

然后来到 ControlNet 的设置页面。预处理器选择 none; 模型选择 “control_vlp_sd15_brightness”。这里比较重要的是 Control Weight (控制权重) 和 Ending Control Step (结束步数)。它们要设置一个较低的数值,太高的话会导致过度拟合,画面失真。具体数值随每个画面的不同而不同。

下图右半部分是改变光线后的图片。观察一下,光线是否有很大不同呢。

图片

# 其它案例

我甚至还可以再修改一下灰度图,造个太阳或者月亮出来。
在这里插入图片描述

我在灰度图的左上方画了一个白色的圆形区域,这样 SD 就可以帮我模拟太阳或月亮的效果。将原先的灰度图进行替换之后,我在提示词里添加了 “月亮”,“蓝色时刻 (Blue Hour)” 这两个英文单词之后,再点击生成,SD 就为我生成了下图。

图片

然后我将提示词里的“街道”替换为“沙滩”之后,SD就为我生成了下面的图片。

图片

# 其它说明

Brightness 这个模型虽好,但和其它 ControlNet 模型配合经常会出问题。如果不出问题的话,还可以配合 Canny 或者 Lineart 来精准控制画面的构图。单独使用虽然可以改变光影效果,但画面的构图也会发生一些变化。

早点开启AI学习,给自己的人生来个翻天覆地的变化吧!

如果你也对AI技术感兴趣感兴趣,可以下方扫码免费领取一份AI技术入门资料包wx扫描二v码免费领取保证100%免费

在这里插入图片描述

在可预见的未来,随着AI大范围在职场推广,使用门槛降低,部分还在做重复工作的打工人会不可避免地被取代。

这也是为什么身边越来越多人都在学AI。

负责任地说,这是AI离普通人超近的一次。它——

  • 很简单: 只要你有一个浏览器,登录一个网页,会打字、会聊微信就能够直接使用。

  • 很实用: 任何上班族,无论你的工作涉及文字、图片、数字,或是办公软件全家桶,它都能成为你的高效助理。

  • 很聪明: AI如同一个六边形战士,当你有个绝妙点子,它能随时点亮技能树,用编程、写作、绘画技能把你的想法落地。
    图片
    随着人工智能的推广,具备AI技能的人将更容易适应未来岗位需求,成为早期吃到红利的稀缺人才。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值