HDU1632+半平面交

模板题

题意:给定两个凸多边形,求出合并后的面积,这个合并后的面积不包括重叠部分。

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const int maxn = 155;
const int maxm = 155;
const double eps = 1e-8;
const double pi = acos(-1.0);
struct Point{
	double x,y;
};
struct Line{
	Point a,b;
};
Point pnt1[ maxn ],res[ maxm ],pnt2[ maxn ],tp[ maxm ];
double xmult( Point op,Point sp,Point ep ){
	return (sp.x-op.x)*(ep.y-op.y)-(sp.y-op.y)*(ep.x-op.x);
}
double dist( Point a,Point b ){
	return sqrt( (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y) );
}
void Get_equation( Point p1,Point p2,double &a,double &b,double &c ){
	a = p2.y-p1.y;
	b = p1.x-p2.x;
	c = p2.x*p1.y-p1.x*p2.y;
}//直线方程
Point Intersection( Point p1,Point p2,double a,double b,double c ){
	double u = fabs( a*p1.x+b*p1.y+c );
	double v = fabs( a*p2.x+b*p2.y+c );
	Point tt;
	tt.x = (p1.x*v+p2.x*u)/(u+v);
	tt.y = (p1.y*v+p2.y*u)/(u+v);
	return tt;
}//交点、按照三角比例求出交点
double GetArea( Point p[],int n ){
	double sum = 0;
	for( int i=2;i<n;i++ ){
		sum += xmult( p[1],p[i],p[i+1] );
	}
	return -sum/2.0;
}//面积,顺时针为正
void cut( double a,double b,double c,int &cnt ){
	int temp = 0;
	for( int i=1;i<=cnt;i++ ){
		if( a*res[i].x+b*res[i].y+c>-eps ){//>=0
			tp[ ++temp ] = res[i];
		}
		else{
			if( a*res[i-1].x+b*res[i-1].y+c>eps ){
				tp[ ++temp ] = Intersection( res[i-1],res[i],a,b,c );
			}
			if( a*res[i+1].x+b*res[i+1].y+c>eps ){
				tp[ ++temp ] = Intersection( res[i],res[i+1],a,b,c );
			}
		}
	}
	for( int i=1;i<=temp;i++ )
		res[i] = tp[i];
	res[ 0 ] = res[ temp ];
	res[ temp+1 ] = res[ 1 ];
	cnt = temp;
}

int main(){
	int m,n;
	while( scanf("%d",&n)==1,n ){
		for( int i=1;i<=n;i++ ){
			scanf("%lf%lf",&pnt1[i].x,&pnt1[i].y);
		}
		scanf("%d",&m);
		for( int i=1;i<=m;i++ ){
			scanf("%lf%lf",&pnt2[i].x,&pnt2[i].y);
		}
		double sumArea1,sumArea2,Area;
		sumArea1 = GetArea( pnt1,n );
		sumArea2 = GetArea( pnt2,m );
		if( sumArea1<eps ){
			reverse( pnt1+1,pnt1+1+n );
		}
		pnt1[ 0 ] = pnt1[ n ];
		pnt1[ n+1 ] = pnt1[ 1 ];
		if( sumArea2<eps ){
			reverse( pnt2+1,pnt2+1+m );
		}
		pnt2[ 0 ] = pnt2[ m ];
		pnt2[ m+1 ] = pnt2[ 1 ];
		for( int i=0;i<=n+1;i++ ){
			res[i] = pnt1[i];
		}
		int cnt = n;
		for( int i=1;i<=m;i++ ){
			double a,b,c;  
	        Get_equation( pnt2[i],pnt2[i+1],a,b,c );  
	        cut(a,b,c,cnt);  
	    }  
		Area = GetArea( res,cnt );
		double ans = fabs(sumArea1)+fabs(sumArea2)-2.0*fabs(Area);
		printf("%8.2lf",ans);
	}
	puts("");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值